ソースを参照

Implemented ECE metric

Nicholas Schense 5 ヶ月 前
コミット
fac9366b4e
2 ファイル変更35 行追加0 行削除
  1. 3 0
      daily_log.md
  2. 32 0
      utils/metrics.py

+ 3 - 0
daily_log.md

@@ -16,4 +16,7 @@ Relativly sedate day, mostly just rewriting the dataset system to ensure that lo
   - Meet with Ali and Brayden about results, brainstorm reasons
 - Continue reading more papers on uncertainty
 - Investigate BNNs further
+
+## Monday, June 17, 2024
+First day of Week 3!
   

+ 32 - 0
utils/metrics.py

@@ -0,0 +1,32 @@
+import numpy as np
+
+
+# ECE from https://towardsdatascience.com/expected-calibration-error-ece-a-step-by-step-visual-explanation-with-python-code-c3e9aa12937d
+def ECE(samples, true_labels, M=5):
+    # Uniform M bins
+    bin_boundaries = np.linspace(0, 1, M + 1)
+    bin_lowers = bin_boundaries[:-1]
+    bin_uppers = bin_boundaries[1:]
+
+    # Get max probability per sample i
+    confidences = samples
+    predicted_label = true_labels
+
+    # get correct/false
+    accuracies = predicted_label == true_labels
+
+    ece = np.zeros(1)
+
+    for bin_lower, bin_upper in zip(bin_lowers, bin_uppers):
+        # bin sample
+        in_bin = np.logical_and(
+            confidences > bin_lower.item(), confidences < bin_upper.item()
+        )
+        prob_in_bin = in_bin.mean()
+
+        if prob_in_bin > 0:
+            accuracy_in_bin = accuracies[in_bin].mean()
+            avg_confid = confidences[in_bin].mean()
+            ece += np.abs(avg_confid - accuracy_in_bin) * prob_in_bin
+
+        return ece