import torch import torch.nn as nn import torch.optim as optim import torchvision from torch.utils.data import DataLoader import pandas as pd from tqdm import tqdm def train_epoch(model, train_loader, val_loader, criterion, optimizer, config, epoch): model.train() train_loss = 0 val_loss = 0 for i, (data, target) in tqdm( enumerate(train_loader), total=len(train_loader), desc="Epoch " + str(epoch + 1) + "/" + str(config["training"]["max_epochs"]), unit="batch", disable=config["operation"]["silent"], ): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() train_loss += loss.item() train_loss /= len(train_loader) model.eval() with torch.no_grad(): for i, (data, target) in enumerate(val_loader): output = model(data) loss = criterion(output, target) val_loss += loss.item() val_loss /= len(val_loader) return train_loss, val_loss def evaluate_accuracy(model, loader): model.eval() correct = 0 total = 0 predictions = [] actual = [] with torch.no_grad(): for data, target in loader: output = model(data) _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() out = output[:, 1].tolist() predictions.extend(out) act = target[:, 1].tolist() actual.extend(act) return correct / total, predictions, actual def train_model(model, train_loader, val_loader, criterion, optimizer, config): history = pd.DataFrame( columns=["Epoch", "Train Loss", "Val Loss", "Train Acc", "Val Acc"] ).set_index("Epoch") for epoch in range(config["training"]["max_epochs"]): train_loss, val_loss = train_epoch( model, train_loader, val_loader, criterion, optimizer, config, epoch ) if config["operation"]["silent"] is False: print( f"Epoch {epoch + 1} - Train Loss: {train_loss} - Val Loss: {val_loss}" ) train_acc, _, _ = evaluate_accuracy(model, train_loader) val_acc, _, _ = evaluate_accuracy(model, val_loader) history.loc[epoch] = [train_loss, val_loss, train_acc, val_acc] return history