import threshold_xarray as th import xarray as xr import numpy as np import torch import os import sklearn.calibration as cal # The purpose of this file is to calibrate the data on the test set, and evaluate the calibration on the validation set. # We are using scikits calibration library to do this. if __name__ == '__main__': print('Loading Config..B') config = th.load_config() ENSEMBLE_PATH = f"{config['paths']['model_output']}{config['ensemble']['name']}" V4_PATH = ENSEMBLE_PATH + '/v4' if not os.path.exists(V4_PATH): os.makedirs(V4_PATH) print('Config Loaded') # Load the predictions print('Loading Predictions...') val_preds = xr.open_dataset(f'{ENSEMBLE_PATH}/val_predictions.nc') test_preds = xr.open_dataset(f'{ENSEMBLE_PATH}/test_predictions.nc') print('Predictions Loaded') # Now the goal is to calibrate the test set, and evaluate the calibration on the validation set. # We do this by binning the data into 15 bins, and then calculating the mean of the predictions in each bin. # We then use this to calibrate the data. # First, get the statistics of both sets print('Calculating Statistics...') val_stats = th.compute_ensemble_statistics(val_preds) test_stats = th.compute_ensemble_statistics(test_preds) # Calibrate the test set print('Calibrating Test Set...')