# For this project, we want to calculate the accuracy for many different numbers of models and model selections # We cannot calculate every possible permutation and combination of models, so we will use a random selection import math import itertools as it import xarray as xr import numpy as np import matplotlib.pyplot as plt import torch as th import random as rand import threshold_xarray as txr import os # Generate a selection of combinations given an iterable, combination length, and number of combinations # This checks the number of possible combinations and compares it to the requested number of combinations # If the number of requested combinations is more than the possible number of combinations, it wil error # If it is less, it will generate all possible combinations and select the requested number of combinations # If it is much less, it will randomly generate the requested number of combinations and check that they are unique # If it is equal, it will generate and return all possible combinations\ def get_combinations(iterable, r, n_combinations): possible_combinations = math.comb(len(iterable), r) if n_combinations < possible_combinations: raise ValueError( f'Number of requested combinations {n_combinations} of length {r} on set of length {len(iterable)} is less than the possible number of combinations {possible_combinations}' ) elif n_combinations == possible_combinations: return list(it.combinations(iterable, r)) else: if n_combinations < possible_combinations / 5: combinations = [] while len(combinations) < n_combinations: combination = rand.sample(iterable, r) if combination not in combinations: combinations.append(combination) return combinations else: combinations = list(it.combinations(iterable, r)) # All possible combinations return rand.sample( combinations, n_combinations ) # Randomly select n_combinations # Now that we have a function to generate combinations, we can generate a list of 49 * 50 + 1 combinations # This will be a list of 2451 combinations of 50 models models = list(range(50)) combos = {} for i in range(49): combos[i] = get_combinations(models, i + 1, 50) combos[50] = [models] # Now that we have the list of combinations, we need the predictions print('Loading Config...') config = txr.load_config() ENSEMBLE_PATH = f"{config['paths']['model_output']}{config['ensemble']['name']}" V4_PATH = ENSEMBLE_PATH + '/v4' if not os.path.exists(V4_PATH): os.makedirs(V4_PATH) print('Config Loaded') test_predictions = xr.open_dataarray(f'{V4_PATH}/test_predictions.nc') val_predictions = xr.open_dataarray(f'{V4_PATH}/val_predictions.nc') # Prune Data print('Pruning Data...') if config['operation']['exclude_blank_ids']: excluded_data_ids = config['ensemble']['excluded_ids'] test_predictions = txr.prune_data(test_predictions, excluded_data_ids) val_predictions = txr.prune_data(val_predictions, excluded_data_ids) # Concatenate Predictions predictions = xr.concat([test_predictions, val_predictions], dim='data_id') # Now that we have the list of predictions, we can calculate the accuracy and other stats for each combination # We will calculate the accuracy for each combination of models and save the results # Calculate the accuracy for each combination of models for num_models, model_combinations in combos.items(): print(f'Calculating Accuracy for {num_models} Models') for i, model_combination in enumerate(model_combinations): print(f'Calculating Accuracy for Combination {i} of {len(model_combinations)}') model_predictions = predictions.sel(model=model_combination) # Calculate the accuracy num_correct =