[paths] mri_data = '/data/data_wnx1/_Data/AlzheimersDL/CNN+RNN-2class-1cnn+data/PET_volumes_customtemplate_float32/' xls_data = '/export/home/nschense/alzheimers/alzheimers_nn/LP_ADNIMERGE.csv' #CHANGE THESE BEFORE RUNNING model_output = '/export/home/nschense/alzheimers/alzheimers_nn/saved_models/' [training] device = 'cuda:1' runs = 10 max_epochs = 10 [dataset] validation_split = 0.3 [model] name = 'cnn-ensemble10x10' image_channels = 1 clin_data_channels = 2 [hyperparameters] batch_size = 32 learning_rate = 0.0001 droprate = 0.5 [operation] silent = false [ensemble] name = 'cnn-ensemble10x10' prune_threshold = 0.7 # Any models with accuracy below this threshold will be pruned, set to 0 to disable pruning