#MACHINE LEARNING import torch import torch.nn as nn import torch.optim as optim import torchvision #GENERAL USE import numpy as np import pandas as pd from datetime import datetime #SYSTEM import tomli as toml import os #DATA PROCESSING from sklearn.model_selection import train_test_split #CUSTOM MODULES import utils.models.cnn as cnn #CONFIGURATION if os.getenv('ADL_CONFIG_PATH') is None: with open ('config.toml', 'rb') as f: config = toml.load(f) else: with open(os.getenv('ADL_CONFIG_PATH'), 'rb') as f: config = toml.load(f) #Set up the model model = cnn.CNN(config) criterion = nn.BCELoss() optimizer = optim.Adam(model.parameters(), lr = config['training']['learning_rate']) #Load datasets