[paths] mri_data = '/data/data_wnx1/_Data/AlzheimersDL/CNN+RNN-2class-1cnn+data/PET_volumes_customtemplate_float32/' xls_data = '/export/home/nschense/alzheimers/alzheimers_nn/LP_ADNIMERGE.csv' #CHANGE THESE BEFORE RUNNING model_output = '/export/home/nschense/alzheimers/alzheimers_nn/saved_models/' [training] device = 'cuda:1' runs = 50 max_epochs = 30 [dataset] excluded_ids = [91, 108, 268, 269, 272, 279, 293, 296, 307] validation_split = 0.4 #Splits the dataset into the train and validation/test set, 50% each for validation and test #|---TEST---|---VALIDATION---|---TRAIN---| #|splt*0.5 | split*0.5 | 1-split | [model] name = 'cnn-50x30' image_channels = 1 clin_data_channels = 2 [hyperparameters] batch_size = 32 learning_rate = 0.0001 droprate = 0.5 [operation] silent = false exclude_blank_ids = false [ensemble] name = 'cnn-50x30' prune_threshold = 0.0 # Any models with accuracy below this threshold will be pruned, set to 0 to disable pruning individual_id = 1 # The id of the individual model to be used for the ensemble run_models = false # If true, the ensemble will run the models to generate the predictions, otherwise will load from file excluded_ids = [] # List of data ids to be excluded from the ensemble