123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392 |
- import pandas as pd
- import numpy as np
- import os
- import tomli as toml
- from utils.data.datasets import prepare_datasets
- import utils.ensemble as ens
- import torch
- import matplotlib.pyplot as plt
- import sklearn.metrics as metrics
- from tqdm import tqdm
- import utils.metrics as met
- import itertools as it
- import matplotlib.ticker as ticker
- import glob
- import pickle as pk
- import warnings
- warnings.filterwarnings('error')
- # CONFIGURATION
- if os.getenv('ADL_CONFIG_PATH') is None:
- with open('config.toml', 'rb') as f:
- config = toml.load(f)
- else:
- with open(os.getenv('ADL_CONFIG_PATH'), 'rb') as f:
- config = toml.load(f)
- ENSEMBLE_PATH = f"{config['paths']['model_output']}{config['ensemble']['name']}"
- V3_PATH = ENSEMBLE_PATH + '/v3'
- # Create the directory if it does not exist
- if not os.path.exists(V3_PATH):
- os.makedirs(V3_PATH)
- # Models is a dictionary with the model ids as keys and the model data as values
- def get_model_predictions(models, data):
- predictions = {}
- for model_id, model in models.items():
- model.eval()
- with torch.no_grad():
- # Get the predictions
- output = model(data)
- predictions[model_id] = output.detach().cpu().numpy()
- return predictions
- def load_models_v2(folder, device):
- glob_path = os.path.join(folder, '*.pt')
- model_files = glob.glob(glob_path)
- model_dict = {}
- for model_file in model_files:
- model = torch.load(model_file, map_location=device)
- model_id = os.path.basename(model_file).split('_')[0]
- model_dict[model_id] = model
- if len(model_dict) == 0:
- raise FileNotFoundError('No models found in the specified directory: ' + folder)
- return model_dict
- # Ensures that both mri and xls tensors in the data are unsqueezed and are on the correct device
- def preprocess_data(data, device):
- mri, xls = data
- mri = mri.unsqueeze(0).to(device)
- xls = xls.unsqueeze(0).to(device)
- return (mri, xls)
- def ensemble_dataset_predictions(models, dataset, device):
- # For each datapoint, get the predictions of each model
- predictions = {}
- for i, (data, target) in tqdm(enumerate(dataset), total=len(dataset)):
- # Preprocess data
- data = preprocess_data(data, device)
- # Predictions is a dicionary of tuples, with the target as the first and the model predicions dictionary as the second
- # The key is the id of the image
- predictions[i] = (
- target.detach().cpu().numpy(),
- get_model_predictions(models, data),
- )
- return predictions
- # Given a dictionary of predictions, select one model and eliminate the rest
- def select_individual_model(predictions, model_id):
- selected_model_predictions = {}
- for key, value in predictions.items():
- selected_model_predictions[key] = (
- value[0],
- {model_id: value[1][str(model_id)]},
- )
- return selected_model_predictions
- # Given a dictionary of predictions, select a subset of models and eliminate the rest
- def select_subset_models(predictions, model_ids):
- selected_model_predictions = {}
- for key, value in predictions.items():
- selected_model_predictions[key] = (
- value[0],
- {model_id: value[1][model_id] for model_id in model_ids},
- )
- return selected_model_predictions
- # Given a dictionary of predictions, calculate statistics (stdev, mean, entropy, correctness) for each result
- # Returns a dataframe of the form {data_id: (mean, stdev, entropy, confidence, correct, predicted, actual)}
- def calculate_statistics(predictions):
- # Create DataFrame with columns for each statistic
- stats_df = pd.DataFrame(
- columns=[
- 'mean',
- 'stdev',
- 'entropy',
- 'confidence',
- 'correct',
- 'predicted',
- 'actual',
- ]
- )
- # First, loop through each prediction
- for key, value in predictions.items():
- target = value[0]
- model_predictions = list(value[1].values())
- # Calculate the mean and stdev of predictions
- mean = np.squeeze(np.mean(model_predictions, axis=0))
- stdev = np.squeeze(np.std(model_predictions, axis=0))[1]
- # Calculate the entropy of the predictions
- entropy = met.entropy(mean)
- # Calculate confidence
- confidence = (np.max(mean) - 0.5) * 2
- # Calculate predicted and actual
- predicted = np.argmax(mean)
- actual = np.argmax(target)
- # Determine if the prediction is correct
- correct = predicted == actual
- # Add the statistics to the dataframe
- stats_df.loc[key] = [
- mean,
- stdev,
- entropy,
- confidence,
- correct,
- predicted,
- actual,
- ]
- return stats_df
- # Takes in a dataframe of the form {data_id: statistic, ...} and calculates the thresholds for the statistic
- # Output of the form DataFrame(index=threshold, columns=[accuracy, f1])
- def conduct_threshold_analysis(statistics, statistic_name, low_to_high=True):
- # Gives a dataframe
- percentile_df = statistics[statistic_name].quantile(
- q=np.linspace(0.05, 0.95, num=18)
- )
- # Dictionary of form {threshold: {metric: value}}
- thresholds_pd = pd.DataFrame(index=percentile_df.index, columns=['accuracy', 'f1'])
- for percentile, value in percentile_df.items():
- # Filter the statistics
- if low_to_high:
- filtered_statistics = statistics[statistics[statistic_name] < value]
- else:
- filtered_statistics = statistics[statistics[statistic_name] >= value]
- # Calculate accuracy and f1 score
- accuracy = filtered_statistics['correct'].mean()
- # Calculate F1 score
- predicted = filtered_statistics['predicted'].values
- actual = filtered_statistics['actual'].values
- f1 = metrics.f1_score(actual, predicted)
- # Add the metrics to the dataframe
- thresholds_pd.loc[percentile] = [accuracy, f1]
- return thresholds_pd
- # Takes a dictionary of the form {threshold: {metric: value}} for a given statistic and plots the metric against the threshold.
- # Can plot an additional line if given (used for individual results)
- def plot_threshold_analysis(
- thresholds_metric, title, x_label, y_label, path, additional_set=None, flip=False
- ):
- # Initialize the plot
- fig, ax = plt.subplots()
- # Get the thresholds and metrics
- thresholds = list(thresholds_metric.index)
- metric = list(thresholds_metric.values)
- # Plot the metric against the threshold
- plt.plot(thresholds, metric, 'bo-', label='Ensemble')
- if additional_set is not None:
- # Get the thresholds and metrics
- thresholds = list(additional_set.index)
- metric = list(additional_set.values)
- # Plot the metric against the threshold
- plt.plot(thresholds, metric, 'rx-', label='Individual')
- if flip:
- ax.invert_xaxis()
- # Add labels
- plt.title(title)
- plt.xlabel(x_label)
- plt.ylabel(y_label)
- plt.legend()
- ax.xaxis.set_major_formatter(ticker.PercentFormatter(xmax=1))
- plt.savefig(path)
- plt.close()
- # Code from https://stackoverflow.com/questions/16458340
- # Returns the intersections of multiple dictionaries
- def common_entries(*dcts):
- if not dcts:
- return
- for i in set(dcts[0]).intersection(*dcts[1:]):
- yield (i,) + tuple(d[i] for d in dcts)
- def main():
- # Load the models
- device = torch.device(config['training']['device'])
- models = load_models_v2(f'{ENSEMBLE_PATH}/models/', device)
- # Load Dataset
- dataset = torch.load(f'{ENSEMBLE_PATH}/test_dataset.pt') + torch.load(
- f'{ENSEMBLE_PATH}/val_dataset.pt'
- )
- if config['ensemble']['run_models']:
- # Get thre predicitons of the ensemble
- ensemble_predictions = ensemble_dataset_predictions(models, dataset, device)
- # Save to file using pickle
- with open(f'{V3_PATH}/ensemble_predictions.pk', 'wb') as f:
- pk.dump(ensemble_predictions, f)
- else:
- # Load the predictions from file
- with open(f'{V3_PATH}/ensemble_predictions.pk', 'rb') as f:
- ensemble_predictions = pk.load(f)
- # Get the statistics and thresholds of the ensemble
- ensemble_statistics = calculate_statistics(ensemble_predictions)
- stdev_thresholds = conduct_threshold_analysis(
- ensemble_statistics, 'stdev', low_to_high=True
- )
- entropy_thresholds = conduct_threshold_analysis(
- ensemble_statistics, 'entropy', low_to_high=True
- )
- confidence_thresholds = conduct_threshold_analysis(
- ensemble_statistics, 'confidence', low_to_high=False
- )
- # Print ECE and MCE Values
- conf_ece = met.ECE(
- ensemble_statistics['predicted'],
- ensemble_statistics['confidence'],
- ensemble_statistics['actual'],
- )
- conf_mce = met.MCE(
- ensemble_statistics['predicted'],
- ensemble_statistics['confidence'],
- ensemble_statistics['actual'],
- )
- ent_ece = met.ECE(
- ensemble_statistics['predicted'],
- ensemble_statistics['entropy'],
- ensemble_statistics['actual'],
- )
- ent_mce = met.MCE(
- ensemble_statistics['predicted'],
- ensemble_statistics['entropy'],
- ensemble_statistics['actual'],
- )
- stdev_ece = met.ECE(
- ensemble_statistics['predicted'],
- ensemble_statistics['stdev'],
- ensemble_statistics['actual'],
- )
- stdev_mce = met.MCE(
- ensemble_statistics['predicted'],
- ensemble_statistics['stdev'],
- ensemble_statistics['actual'],
- )
- print(f'Confidence ECE: {conf_ece}, Confidence MCE: {conf_mce}')
- print(f'Entropy ECE: {ent_ece}, Entropy MCE: {ent_mce}')
- print(f'Stdev ECE: {stdev_ece}, Stdev MCE: {stdev_mce}')
- # Print overall ensemble statistics
- print('Ensemble Statistics')
- print(f"Accuracy: {ensemble_statistics['correct'].mean()}")
- print(
- f"F1 Score: {metrics.f1_score(ensemble_statistics['actual'], ensemble_statistics['predicted'])}"
- )
- # Get the predictions, statistics and thresholds an individual model
- indv_id = config['ensemble']['individual_id']
- indv_predictions = select_individual_model(ensemble_predictions, indv_id)
- indv_statistics = calculate_statistics(indv_predictions)
- # Calculate entropy and confidence thresholds for individual model
- indv_entropy_thresholds = conduct_threshold_analysis(
- indv_statistics, 'entropy', low_to_high=True
- )
- indv_confidence_thresholds = conduct_threshold_analysis(
- indv_statistics, 'confidence', low_to_high=False
- )
- # Plot the threshold analysis for standard deviation
- plot_threshold_analysis(
- stdev_thresholds['accuracy'],
- 'Stdev Threshold Analysis for Accuracy',
- 'Stdev Threshold',
- 'Accuracy',
- f'{V3_PATH}/stdev_threshold_analysis.png',
- flip=True,
- )
- plot_threshold_analysis(
- stdev_thresholds['f1'],
- 'Stdev Threshold Analysis for F1 Score',
- 'Stdev Threshold',
- 'F1 Score',
- f'{V3_PATH}/stdev_threshold_analysis_f1.png',
- flip=True,
- )
- # Plot the threshold analysis for entropy
- plot_threshold_analysis(
- entropy_thresholds['accuracy'],
- 'Entropy Threshold Analysis for Accuracy',
- 'Entropy Threshold',
- 'Accuracy',
- f'{V3_PATH}/entropy_threshold_analysis.png',
- indv_entropy_thresholds['accuracy'],
- flip=True,
- )
- plot_threshold_analysis(
- entropy_thresholds['f1'],
- 'Entropy Threshold Analysis for F1 Score',
- 'Entropy Threshold',
- 'F1 Score',
- f'{V3_PATH}/entropy_threshold_analysis_f1.png',
- indv_entropy_thresholds['f1'],
- flip=True,
- )
- # Plot the threshold analysis for confidence
- plot_threshold_analysis(
- confidence_thresholds['accuracy'],
- 'Confidence Threshold Analysis for Accuracy',
- 'Confidence Threshold',
- 'Accuracy',
- f'{V3_PATH}/confidence_threshold_analysis.png',
- indv_confidence_thresholds['accuracy'],
- )
- plot_threshold_analysis(
- confidence_thresholds['f1'],
- 'Confidence Threshold Analysis for F1 Score',
- 'Confidence Threshold',
- 'F1 Score',
- f'{V3_PATH}/confidence_threshold_analysis_f1.png',
- indv_confidence_thresholds['f1'],
- )
- if __name__ == '__main__':
- main()
|