1234567891011121314151617181920212223242526272829303132333435363738 |
- [paths]
- mri_data = '/data/data_wnx1/_Data/AlzheimersDL/CNN+RNN-2class-1cnn+data/PET_volumes_customtemplate_float32/'
- xls_data = '/export/home/nschense/alzheimers/alzheimers_nn/LP_ADNIMERGE.csv'
- #CHANGE THESE BEFORE RUNNING
- model_output = '/export/home/nschense/alzheimers/alzheimers_nn/saved_models/'
- [training]
- device = 'cuda:1'
- runs = 50
- max_epochs = 30
- [dataset]
- excluded_ids = [91, 108, 268, 269, 272, 279, 293, 296, 307]
- validation_split = 0.4 #Splits the dataset into the train and validation/test set, 50% each for validation and test
- #|---TEST---|---VALIDATION---|---TRAIN---|
- #|splt*0.5 | split*0.5 | 1-split |
- [model]
- name = 'cnn-50x30'
- image_channels = 1
- clin_data_channels = 2
- [hyperparameters]
- batch_size = 32
- learning_rate = 0.0001
- droprate = 0.5
- [operation]
- silent = false
- exclude_blank_ids = false
- [ensemble]
- name = 'cnn-50x30'
- prune_threshold = 0.0 # Any models with accuracy below this threshold will be pruned, set to 0 to disable pruning
- individual_id = 1 # The id of the individual model to be used for the ensemble
- run_models = false # If true, the ensemble will run the models to generate the predictions, otherwise will load from file
- excluded_ids = [] # List of data ids to be excluded from the ensemble
|