12345678910111213141516171819202122232425262728293031323334353637 |
- # This file is just to tell how many total images there are in the dataset
- import threshold_refac as tr
- import torch
- config = tr.load_config()
- ENSEMBLE_PATH = f"{config['paths']['model_output']}{config['ensemble']['name']}"
- test_dset = torch.load(f'{ENSEMBLE_PATH}/test_dataset.pt')
- val_dset = torch.load(f'{ENSEMBLE_PATH}/val_dataset.pt')
- train_dset = torch.load(f'{ENSEMBLE_PATH}/train_dataset.pt')
- print(
- f'Total number of images in dataset: {len(test_dset) + len(val_dset) + len(train_dset)}'
- )
- print(f'Test: {len(test_dset)}, Val: {len(val_dset)}, Train: {len(train_dset)}')
- def preprocess_data(data, device):
- mri, xls = data
- mri = mri.unsqueeze(0).to(device)
- xls = xls.unsqueeze(0).to(device)
- return (mri, xls)
- # Loop through images and determine how many are positive and negative
- positive = 0
- negative = 0
- for _, (_, target) in enumerate(test_dset + train_dset + val_dset):
- actual = list(target.cpu().numpy())[1].item()
- if actual == 1:
- positive += 1
- else:
- negative += 1
- print(f'Positive: {positive}, Negative: {negative}')
|