dataset_size.py 1.1 KB

12345678910111213141516171819202122232425262728293031323334353637
  1. # This file is just to tell how many total images there are in the dataset
  2. import threshold_refac as tr
  3. import torch
  4. config = tr.load_config()
  5. ENSEMBLE_PATH = f"{config['paths']['model_output']}{config['ensemble']['name']}"
  6. test_dset = torch.load(f'{ENSEMBLE_PATH}/test_dataset.pt')
  7. val_dset = torch.load(f'{ENSEMBLE_PATH}/val_dataset.pt')
  8. train_dset = torch.load(f'{ENSEMBLE_PATH}/train_dataset.pt')
  9. print(
  10. f'Total number of images in dataset: {len(test_dset) + len(val_dset) + len(train_dset)}'
  11. )
  12. print(f'Test: {len(test_dset)}, Val: {len(val_dset)}, Train: {len(train_dset)}')
  13. def preprocess_data(data, device):
  14. mri, xls = data
  15. mri = mri.unsqueeze(0).to(device)
  16. xls = xls.unsqueeze(0).to(device)
  17. return (mri, xls)
  18. # Loop through images and determine how many are positive and negative
  19. positive = 0
  20. negative = 0
  21. for _, (_, target) in enumerate(test_dset + train_dset + val_dset):
  22. actual = list(target.cpu().numpy())[1].item()
  23. if actual == 1:
  24. positive += 1
  25. else:
  26. negative += 1
  27. print(f'Positive: {positive}, Negative: {negative}')