123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806 |
- # Rewritten Program to use xarray instead of pandas for thresholding
- import xarray as xr
- import torch
- import numpy as np
- import os
- import glob
- import tomli as toml
- from tqdm import tqdm
- import utils.metrics as met
- import matplotlib.pyplot as plt
- import matplotlib.ticker as mtick
- # The datastructures for this file are as follows
- # models_dict: Dictionary - {model_id: model}
- # predictions: DataArray - (data_id, model_id, prediction_value) - Prediction value has coords ['negative_prediction', 'positive_prediction', 'negative_actual', 'positive_actual']
- # ensemble_statistics: DataArray - (data_id, statistic) - Statistic has coords ['mean', 'stdev', 'entropy', 'confidence', 'correct', 'predicted', 'actual']
- # thresholded_predictions: DataArray - (quantile, statistic, metric) - Metric has coords ['accuracy, 'f1'] - only use 'stdev', 'entropy', 'confidence' for statistic
- # Additionally, we also have the thresholds and statistics for the individual models
- # indv_statistics: DataArray - (data_id, model_id, statistic) - Statistic has coords ['mean', 'entropy', 'confidence', 'correct', 'predicted', 'actual'] - No stdev as it cannot be calculated for a single model
- # indv_thresholds: DataArray - (model_id, quantile, statistic, metric) - Metric has coords ['accuracy', 'f1'] - only use 'entropy', 'confidence' for statistic
- # Additionally, we have some for the sensitivity analysis for number of models
- # sensitivity_statistics: DataArray - (data_id, model_count, statistic) - Statistic has coords ['accuracy', 'f1', 'ECE', 'MCE']
- # Loads configuration dictionary
- def load_config():
- if os.getenv('ADL_CONFIG_PATH') is None:
- with open('config.toml', 'rb') as f:
- config = toml.load(f)
- else:
- with open(os.getenv('ADL_CONFIG_PATH'), 'rb') as f:
- config = toml.load(f)
- return config
- # Loads models into a dictionary
- def load_models_v2(folder, device):
- glob_path = os.path.join(folder, '*.pt')
- model_files = glob.glob(glob_path)
- model_dict = {}
- for model_file in model_files:
- model = torch.load(model_file, map_location=device)
- model_id = os.path.basename(model_file).split('_')[0]
- model_dict[model_id] = model
- if len(model_dict) == 0:
- raise FileNotFoundError('No models found in the specified directory: ' + folder)
- return model_dict
- # Ensures that both mri and xls tensors in the data are unsqueezed and are on the correct device
- def preprocess_data(data, device):
- mri, xls = data
- mri = mri.unsqueeze(0).to(device)
- xls = xls.unsqueeze(0).to(device)
- return (mri, xls)
- # Loads datasets and returns concatenated test and validation datasets
- def load_datasets(ensemble_path):
- return (
- torch.load(f'{ensemble_path}/test_dataset.pt'),
- torch.load(f'{ensemble_path}/val_dataset.pt'),
- )
- # Gets the predictions for a set of models on a dataset
- def get_ensemble_predictions(models, dataset, device, id_offset=0):
- zeros = np.zeros((len(dataset), len(models), 4))
- predictions = xr.DataArray(
- zeros,
- dims=('data_id', 'model_id', 'prediction_value'),
- coords={
- 'data_id': range(len(dataset)),
- 'model_id': list(models.keys()),
- 'prediction_value': [
- 'negative_prediction',
- 'positive_prediction',
- 'negative_actual',
- 'positive_actual',
- ],
- },
- )
- for data_id, (data, target) in tqdm(
- enumerate(dataset), total=len(dataset), unit='images'
- ):
- dat = preprocess_data(data, device)
- actual = list(target.cpu().numpy())
- for model_id, model in models.items():
- with torch.no_grad():
- output = model(dat)
- prediction = output.cpu().numpy().tolist()[0]
- predictions.loc[
- {'data_id': data_id + id_offset, 'model_id': model_id}
- ] = prediction + actual
- return predictions
- # Compute the ensemble statistics given an array of predictions
- def compute_ensemble_statistics(predictions: xr.DataArray):
- zeros = np.zeros((len(predictions.data_id), 7))
- ensemble_statistics = xr.DataArray(
- zeros,
- dims=('data_id', 'statistic'),
- coords={
- 'data_id': predictions.data_id,
- 'statistic': [
- 'mean',
- 'stdev',
- 'entropy',
- 'confidence',
- 'correct',
- 'predicted',
- 'actual',
- ],
- },
- )
- for data_id in predictions.data_id:
- data = predictions.loc[{'data_id': data_id}]
- mean = data.mean(dim='model_id')[
- 0:2
- ] # Only take the predictions, not the actual
- stdev = data.std(dim='model_id')[
- 1
- ] # Only need the standard deviation of the postive prediction
- entropy = (-mean * np.log(mean)).sum()
- # Compute confidence
- confidence = mean.max()
- # only need one of the actual values, since they are all the same, just get the first actual_positive
- actual = data.loc[{'prediction_value': 'positive_actual'}][0]
- predicted = mean.argmax()
- correct = actual == predicted
- ensemble_statistics.loc[{'data_id': data_id}] = [
- mean[1],
- stdev,
- entropy,
- confidence,
- correct,
- predicted,
- actual,
- ]
- return ensemble_statistics
- # Compute the thresholded predictions given an array of predictions
- def compute_thresholded_predictions(input_stats: xr.DataArray):
- quantiles = np.linspace(0.05, 0.95, 19) * 100
- metrics = ['accuracy', 'f1']
- statistics = ['stdev', 'entropy', 'confidence']
- zeros = np.zeros((len(quantiles), len(statistics), len(metrics)))
- thresholded_predictions = xr.DataArray(
- zeros,
- dims=('quantile', 'statistic', 'metric'),
- coords={'quantile': quantiles, 'statistic': statistics, 'metric': metrics},
- )
- for statistic in statistics:
- # First, we must compute the quantiles for the statistic
- quantile_values = np.percentile(
- input_stats.sel(statistic=statistic).values, quantiles, axis=0
- )
- # Then, we must compute the metrics for each quantile
- for i, quantile in enumerate(quantiles):
- if low_to_high(statistic):
- mask = (
- input_stats.sel(statistic=statistic) >= quantile_values[i]
- ).values
- else:
- mask = (
- input_stats.sel(statistic=statistic) <= quantile_values[i]
- ).values
- # Filter the data based on the mask
- filtered_data = input_stats.where(
- input_stats.data_id.isin(np.where(mask)), drop=True
- )
- for metric in metrics:
- thresholded_predictions.loc[
- {'quantile': quantile, 'statistic': statistic, 'metric': metric}
- ] = compute_metric(filtered_data, metric)
- return thresholded_predictions
- # Truth function to determine if metric should be thresholded low to high or high to low
- # Low confidence is bad, high entropy is bad, high stdev is bad
- # So we threshold confidence low to high, entropy and stdev high to low
- # So any values BELOW the cutoff are removed for confidence, and any values ABOVE the cutoff are removed for entropy and stdev
- def low_to_high(stat):
- return stat in ['confidence']
- # Compute a given metric on a DataArray of statstics
- def compute_metric(arr, metric):
- if metric == 'accuracy':
- return np.mean(arr.loc[{'statistic': 'correct'}])
- elif metric == 'f1':
- return met.F1(
- arr.loc[{'statistic': 'predicted'}], arr.loc[{'statistic': 'actual'}]
- )
- else:
- raise ValueError('Invalid metric: ' + metric)
- # Graph a thresholded prediction for a given statistic and metric
- def graph_thresholded_prediction(
- thresholded_predictions, statistic, metric, save_path, title, xlabel, ylabel
- ):
- data = thresholded_predictions.sel(statistic=statistic, metric=metric)
- x_data = data.coords['quantile'].values
- y_data = data.values
- fig, ax = plt.subplots()
- ax.plot(x_data, y_data, 'bx-', label='Ensemble')
- ax.set_title(title)
- ax.set_xlabel(xlabel)
- ax.set_ylabel(ylabel)
- ax.xaxis.set_major_formatter(mtick.PercentFormatter())
- if not low_to_high(statistic):
- ax.invert_xaxis()
- plt.savefig(save_path)
- # Graph all thresholded predictions
- def graph_all_thresholded_predictions(thresholded_predictions, save_path):
- # Confidence Accuracy
- graph_thresholded_prediction(
- thresholded_predictions,
- 'confidence',
- 'accuracy',
- f'{save_path}/confidence_accuracy.png',
- 'Coverage Analysis of Confidence vs. Accuracy',
- 'Minimum Confidence Percentile Threshold',
- 'Accuracy',
- )
- # Confidence F1
- graph_thresholded_prediction(
- thresholded_predictions,
- 'confidence',
- 'f1',
- f'{save_path}/confidence_f1.png',
- 'Coverage Analysis of Confidence vs. F1 Score',
- 'Minimum Confidence Percentile Threshold',
- 'F1 Score',
- )
- # Entropy Accuracy
- graph_thresholded_prediction(
- thresholded_predictions,
- 'entropy',
- 'accuracy',
- f'{save_path}/entropy_accuracy.png',
- 'Coverage Analysis of Entropy vs. Accuracy',
- 'Maximum Entropy Percentile Threshold',
- 'Accuracy',
- )
- # Entropy F1
- graph_thresholded_prediction(
- thresholded_predictions,
- 'entropy',
- 'f1',
- f'{save_path}/entropy_f1.png',
- 'Coverage Analysis of Entropy vs. F1 Score',
- 'Maximum Entropy Percentile Threshold',
- 'F1 Score',
- )
- # Stdev Accuracy
- graph_thresholded_prediction(
- thresholded_predictions,
- 'stdev',
- 'accuracy',
- f'{save_path}/stdev_accuracy.png',
- 'Coverage Analysis of Standard Deviation vs. Accuracy',
- 'Maximum Standard Deviation Percentile Threshold',
- 'Accuracy',
- )
- # Stdev F1
- graph_thresholded_prediction(
- thresholded_predictions,
- 'stdev',
- 'f1',
- f'{save_path}/stdev_f1.png',
- 'Coverage Analysis of Standard Deviation vs. F1 Score',
- 'Maximum Standard Deviation Percentile Threshold',
- 'F1',
- )
- # Graph two statistics against each other
- def graph_statistics(stats, x_stat, y_stat, save_path, title, xlabel, ylabel):
- # Filter for correct predictions
- c_stats = stats.where(
- stats.data_id.isin(np.where((stats.sel(statistic='correct') == 1).values)),
- drop=True,
- )
- # Filter for incorrect predictions
- i_stats = stats.where(
- stats.data_id.isin(np.where((stats.sel(statistic='correct') == 0).values)),
- drop=True,
- )
- # x and y data for correct and incorrect predictions
- x_data_c = c_stats.sel(statistic=x_stat).values
- y_data_c = c_stats.sel(statistic=y_stat).values
- x_data_i = i_stats.sel(statistic=x_stat).values
- y_data_i = i_stats.sel(statistic=y_stat).values
- fig, ax = plt.subplots()
- ax.plot(x_data_c, y_data_c, 'go', label='Correct')
- ax.plot(x_data_i, y_data_i, 'ro', label='Incorrect')
- ax.set_title(title)
- ax.set_xlabel(xlabel)
- ax.set_ylabel(ylabel)
- ax.legend()
- plt.savefig(save_path)
- # Prune the data based on excluded data_ids
- def prune_data(data, excluded_data_ids):
- return data.where(~data.data_id.isin(excluded_data_ids), drop=True)
- # Calculate individual model statistics
- def compute_individual_statistics(predictions: xr.DataArray):
- zeros = np.zeros((len(predictions.data_id), len(predictions.model_id), 6))
- indv_statistics = xr.DataArray(
- zeros,
- dims=('data_id', 'model_id', 'statistic'),
- coords={
- 'data_id': predictions.data_id,
- 'model_id': predictions.model_id,
- 'statistic': [
- 'mean',
- 'entropy',
- 'confidence',
- 'correct',
- 'predicted',
- 'actual',
- ],
- },
- )
- for data_id in predictions.data_id:
- for model_id in predictions.model_id:
- data = predictions.loc[{'data_id': data_id, 'model_id': model_id}]
- mean = data[0:2]
- entropy = (-mean * np.log(mean)).sum()
- confidence = mean.max()
- actual = data[3]
- predicted = mean.argmax()
- correct = actual == predicted
- indv_statistics.loc[{'data_id': data_id, 'model_id': model_id}] = [
- mean[1],
- entropy,
- confidence,
- correct,
- predicted,
- actual,
- ]
- return indv_statistics
- # Compute individual model thresholds
- def compute_individual_thresholds(input_stats: xr.DataArray):
- quantiles = np.linspace(0.05, 0.95, 19) * 100
- metrics = ['accuracy', 'f1']
- statistics = ['entropy', 'confidence']
- zeros = np.zeros(
- (len(input_stats.model_id), len(quantiles), len(statistics), len(metrics))
- )
- indv_thresholds = xr.DataArray(
- zeros,
- dims=('model_id', 'quantile', 'statistic', 'metric'),
- coords={
- 'model_id': input_stats.model_id,
- 'quantile': quantiles,
- 'statistic': statistics,
- 'metric': metrics,
- },
- )
- for model_id in input_stats.model_id:
- for statistic in statistics:
- # First, we must compute the quantiles for the statistic
- quantile_values = np.percentile(
- input_stats.sel(model_id=model_id, statistic=statistic).values,
- quantiles,
- axis=0,
- )
- # Then, we must compute the metrics for each quantile
- for i, quantile in enumerate(quantiles):
- if low_to_high(statistic):
- mask = (
- input_stats.sel(model_id=model_id, statistic=statistic)
- >= quantile_values[i]
- ).values
- else:
- mask = (
- input_stats.sel(model_id=model_id, statistic=statistic)
- <= quantile_values[i]
- ).values
- # Filter the data based on the mask
- filtered_data = input_stats.where(
- input_stats.data_id.isin(np.where(mask)), drop=True
- )
- for metric in metrics:
- indv_thresholds.loc[
- {
- 'model_id': model_id,
- 'quantile': quantile,
- 'statistic': statistic,
- 'metric': metric,
- }
- ] = compute_metric(filtered_data, metric)
- return indv_thresholds
- # Graph individual model thresholded predictions
- def graph_individual_thresholded_predictions(
- indv_thresholds,
- ensemble_thresholds,
- statistic,
- metric,
- save_path,
- title,
- xlabel,
- ylabel,
- ):
- data = indv_thresholds.sel(statistic=statistic, metric=metric)
- e_data = ensemble_thresholds.sel(statistic=statistic, metric=metric)
- x_data = data.coords['quantile'].values
- y_data = data.values
- e_x_data = e_data.coords['quantile'].values
- e_y_data = e_data.values
- fig, ax = plt.subplots()
- for model_id in data.coords['model_id'].values:
- model_data = data.sel(model_id=model_id)
- ax.plot(x_data, model_data)
- ax.plot(e_x_data, e_y_data, 'kx-', label='Ensemble')
- ax.set_title(title)
- ax.set_xlabel(xlabel)
- ax.set_ylabel(ylabel)
- ax.xaxis.set_major_formatter(mtick.PercentFormatter())
- if not low_to_high(statistic):
- ax.invert_xaxis()
- ax.legend()
- plt.savefig(save_path)
- # Graph all individual thresholded predictions
- def graph_all_individual_thresholded_predictions(
- indv_thresholds, ensemble_thresholds, save_path
- ):
- # Confidence Accuracy
- graph_individual_thresholded_predictions(
- indv_thresholds,
- ensemble_thresholds,
- 'confidence',
- 'accuracy',
- f'{save_path}/indv/confidence_accuracy.png',
- 'Coverage Analysis of Confidence vs. Accuracy for All Models',
- 'Minumum Confidence Percentile Threshold',
- 'Accuracy',
- )
- # Confidence F1
- graph_individual_thresholded_predictions(
- indv_thresholds,
- ensemble_thresholds,
- 'confidence',
- 'f1',
- f'{save_path}/indv/confidence_f1.png',
- 'Coverage Analysis of Confidence vs. F1 Score for All Models',
- 'Minimum Confidence Percentile Threshold',
- 'F1 Score',
- )
- # Entropy Accuracy
- graph_individual_thresholded_predictions(
- indv_thresholds,
- ensemble_thresholds,
- 'entropy',
- 'accuracy',
- f'{save_path}/indv/entropy_accuracy.png',
- 'Coverage Analysis of Entropy vs. Accuracy for All Models',
- 'Maximum Entropy Percentile Threshold',
- 'Accuracy',
- )
- # Entropy F1
- graph_individual_thresholded_predictions(
- indv_thresholds,
- ensemble_thresholds,
- 'entropy',
- 'f1',
- f'{save_path}/indv/entropy_f1.png',
- 'Coverage Analysis of Entropy vs. F1 Score for All Models',
- 'Maximum Entropy Percentile Threshold',
- 'F1 Score',
- )
- # Calculate statistics of subsets of models for sensitivity analysis
- def calculate_subset_statistics(predictions: xr.DataArray):
- # Calculate subsets for 1-50 models
- subsets = range(1, len(predictions.model_id) + 1)
- zeros = np.zeros(
- (len(predictions.data_id), len(subsets), 7)
- ) # Include stdev, but for 1 models set to NaN
- subset_stats = xr.DataArray(
- zeros,
- dims=('data_id', 'model_count', 'statistic'),
- coords={
- 'data_id': predictions.data_id,
- 'model_count': subsets,
- 'statistic': [
- 'mean',
- 'stdev',
- 'entropy',
- 'confidence',
- 'correct',
- 'predicted',
- 'actual',
- ],
- },
- )
- for data_id in predictions.data_id:
- for subset in subsets:
- data = predictions.sel(
- data_id=data_id, model_id=predictions.model_id[:subset]
- )
- mean = data.mean(dim='model_id')[0:2]
- stdev = data.std(dim='model_id')[1]
- entropy = (-mean * np.log(mean)).sum()
- confidence = mean.max()
- actual = data[0][3]
- predicted = mean.argmax()
- correct = actual == predicted
- subset_stats.loc[{'data_id': data_id, 'model_count': subset}] = [
- mean[1],
- stdev,
- entropy,
- confidence,
- correct,
- predicted,
- actual,
- ]
- return subset_stats
- # Calculate Accuracy, F1 and ECE for subset stats - sensityvity analysis
- def calculate_sensitivity_analysis(subset_stats: xr.DataArray):
- subsets = subset_stats.model_count
- stats = ['accuracy', 'f1']
- zeros = np.zeros((len(subsets), len(stats)))
- sens_analysis = xr.DataArray(
- zeros,
- dims=('model_count', 'statistic'),
- coords={'model_count': subsets, 'statistic': ['accuracy', 'f1']},
- )
- for subset in subsets:
- data = subset_stats.sel(model_count=subset)
- acc = compute_metric(data, 'accuracy')
- f1 = compute_metric(data, 'f1')
- sens_analysis.loc[{'model_count': subset}] = [acc, f1]
- return sens_analysis
- def graph_sensitivity_analysis(
- sens_analysis: xr.DataArray, statistic, save_path, title, xlabel, ylabel
- ):
- data = sens_analysis.sel(statistic=statistic)
- xdata = data.coords['model_count'].values
- ydata = data.values
- fig, ax = plt.subplots()
- ax.plot(xdata, ydata)
- ax.set_title(title)
- ax.set_xlabel(xlabel)
- ax.set_ylabel(ylabel)
- plt.savefig(save_path)
- def calculate_overall_stats(ensemble_statistics: xr.DataArray):
- accuracy = compute_metric(ensemble_statistics, 'accuracy')
- f1 = compute_metric(ensemble_statistics, 'f1')
- return {'accuracy': accuracy.item(), 'f1': f1.item()}
- # https://towardsdatascience.com/expected-calibration-error-ece-a-step-by-step-visual-explanation-with-python-code-c3e9aa12937d
- def calculate_ece_stats(statistics, bins=10):
- bin_boundaries = np.linspace(0, 1, bins + 1)
- bin_lowers = bin_boundaries[:-1]
- bin_uppers = bin_boundaries[1:]
- confidences = ((statistics.sel(statistic='mean').values) - 0.5) * 2
- accuracies = statistics.sel(statistic='correct').values
- ece = np.zeros(1)
- bin_accuracies = xr.DataArray(
- np.zeros(bins), dims=('lower_bound'), coords={'lower_bound': bin_lowers}
- )
- for bin_lower, bin_upper in zip(bin_lowers, bin_uppers):
- in_bin = np.logical_and(
- confidences > bin_lower.item(), confidences <= bin_upper.item()
- )
- prob_in_bin = in_bin.mean()
- if prob_in_bin.item() > 0:
- accuracy_in_bin = accuracies[in_bin].mean()
- bin_accuracies.loc[{'lower_bound': bin_lower}]
- avg_confidence_in_bin = confidences[in_bin].mean()
- ece += np.abs(avg_confidence_in_bin - accuracy_in_bin) * prob_in_bin
- bin_accuracies.attrs['ece'] = ece
- bin_accuracies.attrs['bin_number'] = bins
- return bin_accuracies
- def plot_ece_graph(ece_stats, title, xlabel, ylabel, save_path):
- fix, ax = plt.subplot()
- # Main Function
- def main():
- print('Loading Config...')
- config = load_config()
- ENSEMBLE_PATH = f"{config['paths']['model_output']}{config['ensemble']['name']}"
- V4_PATH = ENSEMBLE_PATH + '/v4'
- if not os.path.exists(V4_PATH):
- os.makedirs(V4_PATH)
- print('Config Loaded')
- # Load Datasets
- print('Loading Datasets...')
- (test_dataset, val_dataset) = load_datasets(ENSEMBLE_PATH)
- print('Datasets Loaded')
- # Get Predictions, either by running the models or loading them from a file
- if config['ensemble']['run_models']:
- # Load Models
- print('Loading Models...')
- device = torch.device(config['training']['device'])
- models = load_models_v2(f'{ENSEMBLE_PATH}/models/', device)
- print('Models Loaded')
- # Get Predictions
- print('Getting Predictions...')
- test_predictions = get_ensemble_predictions(models, test_dataset, device)
- val_predictions = get_ensemble_predictions(
- models, val_dataset, device, len(test_dataset)
- )
- print('Predictions Loaded')
- # Save Prediction
- test_predictions.to_netcdf(f'{V4_PATH}/test_predictions.nc')
- val_predictions.to_netcdf(f'{V4_PATH}/val_predictions.nc')
- else:
- test_predictions = xr.open_dataarray(f'{V4_PATH}/test_predictions.nc')
- val_predictions = xr.open_dataarray(f'{V4_PATH}/val_predictions.nc')
- # Prune Data
- print('Pruning Data...')
- if config['operation']['exclude_blank_ids']:
- excluded_data_ids = config['ensemble']['excluded_ids']
- test_predictions = prune_data(test_predictions, excluded_data_ids)
- val_predictions = prune_data(val_predictions, excluded_data_ids)
- # Concatenate Predictions
- predictions = xr.concat([test_predictions, val_predictions], dim='data_id')
- # Compute Ensemble Statistics
- print('Computing Ensemble Statistics...')
- ensemble_statistics = compute_ensemble_statistics(predictions)
- ensemble_statistics.to_netcdf(f'{V4_PATH}/ensemble_statistics.nc')
- print('Ensemble Statistics Computed')
- # Compute Thresholded Predictions
- print('Computing Thresholded Predictions...')
- thresholded_predictions = compute_thresholded_predictions(ensemble_statistics)
- thresholded_predictions.to_netcdf(f'{V4_PATH}/thresholded_predictions.nc')
- print('Thresholded Predictions Computed')
- # Graph Thresholded Predictions
- print('Graphing Thresholded Predictions...')
- graph_all_thresholded_predictions(thresholded_predictions, V4_PATH)
- print('Thresholded Predictions Graphed')
- # Additional Graphs
- print('Graphing Additional Graphs...')
- # Confidence vs stdev
- graph_statistics(
- ensemble_statistics,
- 'confidence',
- 'stdev',
- f'{V4_PATH}/confidence_stdev.png',
- 'Confidence and Standard Deviation for Predictions',
- 'Confidence',
- 'Standard Deviation',
- )
- print('Additional Graphs Graphed')
- # Compute Individual Statistics
- print('Computing Individual Statistics...')
- indv_statistics = compute_individual_statistics(predictions)
- indv_statistics.to_netcdf(f'{V4_PATH}/indv_statistics.nc')
- print('Individual Statistics Computed')
- # Compute Individual Thresholds
- print('Computing Individual Thresholds...')
- indv_thresholds = compute_individual_thresholds(indv_statistics)
- indv_thresholds.to_netcdf(f'{V4_PATH}/indv_thresholds.nc')
- print('Individual Thresholds Computed')
- # Graph Individual Thresholded Predictions
- print('Graphing Individual Thresholded Predictions...')
- if not os.path.exists(f'{V4_PATH}/indv'):
- os.makedirs(f'{V4_PATH}/indv')
- graph_all_individual_thresholded_predictions(
- indv_thresholds, thresholded_predictions, V4_PATH
- )
- print('Individual Thresholded Predictions Graphed')
- # Compute subset statistics and graph
- subset_stats = calculate_subset_statistics(predictions)
- sens_analysis = calculate_sensitivity_analysis(subset_stats)
- graph_sensitivity_analysis(
- sens_analysis,
- 'accuracy',
- f'{V4_PATH}/sens_analysis.png',
- 'Sensitivity Analsis of Accuracy vs. # of Models',
- '# of Models',
- 'Accuracy',
- )
- print(sens_analysis.sel(statistic='accuracy'))
- print(calculate_overall_stats(ensemble_statistics))
- if __name__ == '__main__':
- main()
|