datasets.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160
  1. # NEEDS TO BE FINISHED
  2. # TODO CHECK ABOUT IMAGE DIMENSIONS
  3. # TODO ENSURE ITERATION WORKS
  4. import glob
  5. import nibabel as nib
  6. import random
  7. import torch
  8. from torch.utils.data import Dataset
  9. import pandas as pd
  10. from torch.utils.data import DataLoader
  11. import math
  12. """
  13. Prepares CustomDatasets for training, validating, and testing CNN
  14. """
  15. def prepare_datasets(mri_dir, xls_file, val_split=0.2, seed=50, device=None):
  16. if device is None:
  17. device = torch.device("cpu")
  18. rndm = random.Random(seed)
  19. xls_data = pd.read_csv(xls_file)
  20. # Strip all trailing whitespace from dataframe
  21. xls_data = xls_data.replace(r"^ +| +$", r"", regex=True)
  22. # Strip all trailing whitespace from column names
  23. xls_data.columns = xls_data.columns.str.strip()
  24. xls_data = xls_data.set_index("Image Data ID")
  25. raw_data = glob.glob(mri_dir + "*")
  26. print(f"Found {len(raw_data)} images in {mri_dir}")
  27. AD_list = []
  28. NL_list = []
  29. # TODO Check that image is in CSV?
  30. for image in raw_data:
  31. if "NL" in image:
  32. NL_list.append(image)
  33. elif "AD" in image:
  34. AD_list.append(image)
  35. rndm.shuffle(AD_list)
  36. rndm.shuffle(NL_list)
  37. train_list, val_list, test_list = get_train_val_test(AD_list, NL_list, val_split)
  38. train_dataset = ADNIDataset(train_list, xls_data, device=device)
  39. val_dataset = ADNIDataset(val_list, xls_data, device=device)
  40. test_dataset = ADNIDataset(test_list, xls_data, device=device)
  41. return train_dataset, val_dataset, test_dataset
  42. # TODO Normalize data? Later add / Exctract clinical data? Which data?
  43. """
  44. Returns train_list, val_list and test_list in format [(image, id), ...] each
  45. """
  46. def get_train_val_test(AD_list, NL_list, val_split):
  47. train_list, val_list, test_list = [], [], []
  48. # For the purposes of this split, the val_split constitutes the validation and testing split, as they are divided evenly
  49. # get the overall length of the data
  50. AD_len = len(AD_list)
  51. NL_len = len(NL_list)
  52. # First, determine the length of each of the sets
  53. AD_val_len = int(math.ceil(AD_len * val_split * 0.5))
  54. NL_val_len = int(math.ceil(NL_len * val_split * 0.5))
  55. AD_test_len = int(math.floor(AD_len * val_split * 0.5))
  56. NL_test_len = int(math.floor(NL_len * val_split * 0.5))
  57. AD_train_len = AD_len - AD_val_len - AD_test_len
  58. NL_train_len = NL_len - NL_val_len - NL_test_len
  59. # Add the data to the sets
  60. for i in range(AD_train_len):
  61. train_list.append((AD_list[i], 1))
  62. for i in range(NL_train_len):
  63. train_list.append((NL_list[i], 0))
  64. for i in range(AD_train_len, AD_train_len + AD_val_len):
  65. val_list.append((AD_list[i], 1))
  66. for i in range(NL_train_len, NL_train_len + NL_val_len):
  67. val_list.append((NL_list[i], 0))
  68. for i in range(AD_train_len + AD_val_len, AD_len):
  69. test_list.append((AD_list[i], 1))
  70. for i in range(NL_train_len + NL_val_len, NL_len):
  71. test_list.append((NL_list[i], 0))
  72. return train_list, val_list, test_list
  73. class ADNIDataset(Dataset):
  74. def __init__(self, mri, xls: pd.DataFrame, device=torch.device("cpu")):
  75. self.mri_data = mri # DATA IS A LIST WITH TUPLES (image_dir, class_id)
  76. self.xls_data = xls
  77. self.device = device
  78. def __len__(self):
  79. return len(self.mri_data)
  80. def _xls_to_tensor(self, xls_data: pd.Series):
  81. # Get used data
  82. # data = xls_data.loc[['Sex', 'Age (current)', 'PTID', 'DXCONFID (1=uncertain, 2= mild, 3= moderate, 4=high confidence)', 'Alz_csf']]
  83. data = xls_data.loc[["Sex", "Age (current)"]]
  84. data.replace({"M": 0, "F": 1}, inplace=True)
  85. # Convert to tensor
  86. xls_tensor = torch.tensor(data.values.astype(float))
  87. return xls_tensor
  88. def __getitem__(
  89. self, idx
  90. ): # RETURNS TUPLE WITH IMAGE AND CLASS_ID, BASED ON INDEX IDX
  91. mri_path, class_id = self.mri_data[idx]
  92. mri = nib.load(mri_path)
  93. mri_data = mri.get_fdata()
  94. xls = self.xls_data.iloc[idx]
  95. # Convert xls data to tensor
  96. xls_tensor = self._xls_to_tensor(xls)
  97. mri_tensor = torch.from_numpy(mri_data).unsqueeze(0)
  98. class_id = torch.tensor([class_id])
  99. # Convert to one-hot and squeeze
  100. class_id = torch.nn.functional.one_hot(class_id, num_classes=2).squeeze(0)
  101. # Convert to float
  102. mri_tensor = mri_tensor.float().to(self.device)
  103. xls_tensor = xls_tensor.float().to(self.device)
  104. class_id = class_id.float().to(self.device)
  105. return (mri_tensor, xls_tensor), class_id
  106. def initalize_dataloaders(
  107. training_data,
  108. val_data,
  109. test_data,
  110. batch_size=64,
  111. ):
  112. train_dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True)
  113. test_dataloader = DataLoader(test_data, batch_size=(batch_size // 4), shuffle=True)
  114. val_dataloader = DataLoader(val_data, batch_size=batch_size, shuffle=True)
  115. return train_dataloader, val_dataloader, test_dataloader