config.toml 887 B

123456789101112131415161718192021222324252627282930313233
  1. [paths]
  2. mri_data = '/data/data_wnx1/_Data/AlzheimersDL/CNN+RNN-2class-1cnn+data/PET_volumes_customtemplate_float32/'
  3. xls_data = '/export/home/nschense/alzheimers/alzheimers_nn/LP_ADNIMERGE.csv'
  4. #CHANGE THESE BEFORE RUNNING
  5. model_output = '/export/home/nschense/alzheimers/alzheimers_nn/saved_models/'
  6. [training]
  7. device = 'cuda:1'
  8. runs = 10
  9. max_epochs = 10
  10. [dataset]
  11. validation_split = 0.4 #Splits the dataset into the train and validation/test set, 50% each for validation and test
  12. #|---TEST---|---VALIDATION---|---TRAIN---|
  13. #|splt*0.5 | split*0.5 | 1-split |
  14. [model]
  15. name = 'cnn-10x10'
  16. image_channels = 1
  17. clin_data_channels = 2
  18. [hyperparameters]
  19. batch_size = 32
  20. learning_rate = 0.0001
  21. droprate = 0.5
  22. [operation]
  23. silent = false
  24. [ensemble]
  25. name = 'cnn-10x10'
  26. prune_threshold = 0.0 # Any models with accuracy below this threshold will be pruned, set to 0 to disable pruning