config.toml 1.2 KB

12345678910111213141516171819202122232425262728293031323334353637
  1. [paths]
  2. mri_data = '/data/data_wnx1/_Data/AlzheimersDL/CNN+RNN-2class-1cnn+data/PET_volumes_customtemplate_float32/'
  3. xls_data = '/export/home/nschense/alzheimers/alzheimers_nn/LP_ADNIMERGE.csv'
  4. #CHANGE THESE BEFORE RUNNING
  5. model_output = '/export/home/nschense/alzheimers/alzheimers_nn/saved_models/'
  6. [training]
  7. device = 'cuda:1'
  8. runs = 50
  9. max_epochs = 30
  10. [dataset]
  11. excluded_ids = [91, 108, 268, 269, 272, 279, 293, 296, 307]
  12. validation_split = 0.4 #Splits the dataset into the train and validation/test set, 50% each for validation and test
  13. #|---TEST---|---VALIDATION---|---TRAIN---|
  14. #|splt*0.5 | split*0.5 | 1-split |
  15. [model]
  16. name = 'cnn-50x30'
  17. image_channels = 1
  18. clin_data_channels = 2
  19. [hyperparameters]
  20. batch_size = 32
  21. learning_rate = 0.0001
  22. droprate = 0.5
  23. [operation]
  24. silent = false
  25. exclude_blank_ids = false
  26. [ensemble]
  27. name = 'cnn-50x30'
  28. prune_threshold = 0.0 # Any models with accuracy below this threshold will be pruned, set to 0 to disable pruning
  29. individual_id = 1 # The id of the individual model to be used for the ensemble
  30. run_models = true # If true, the ensemble will run the models to generate the predictions, otherwise will load from file