config.toml 1.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041
  1. [paths]
  2. #mri_data = '/data/data_wnx1/_Data/AlzheimersDL/CNN+RNN-2class-1cnn+data/PET_volumes_customtemplate_float32/'
  3. #xls_data = '/export/home/nschense/alzheimers/alzheimers_nn/LP_ADNIMERGE.csv'
  4. mri_data = '../data/PET_volumes_customtemplate_float32/'
  5. xls_data = '../data/LP_ADNIMERGE.csv'
  6. #CHANGE THESE BEFORE RUNNING
  7. model_output = '../models/'
  8. [training]
  9. device = 'mps'
  10. runs = 50 # Number of models
  11. max_epochs = 30 # Epochs per model
  12. [dataset]
  13. excluded_ids = [91, 108, 268, 269, 272, 279, 293, 296, 307] # Invalid images to exclude from the dataset
  14. validation_split = 0.4 #Splits the dataset into the train and validation/test set, 50% each for validation and test
  15. #|---TEST---|---VALIDATION---|---TRAIN---|
  16. #|splt*0.5 | split*0.5 | 1-split |
  17. [model]
  18. name = 'cnn-50x30' # Ensemble name - will be folder for saved ensemble
  19. image_channels = 1
  20. clin_data_channels = 2
  21. [hyperparameters]
  22. batch_size = 32
  23. learning_rate = 0.0001
  24. droprate = 0.5
  25. [operation]
  26. silent = false
  27. exclude_blank_ids = false # Determines if invalid IDs are excluded or not
  28. [ensemble]
  29. name = 'cnn-50x30'
  30. prune_threshold = 0.0 # Any models with accuracy below this threshold will be pruned, set to 0 to disable pruning
  31. individual_id = 1 # The id of the individual model to be used for the ensemble
  32. run_models = false # If true, the ensemble will run the models to generate the predictions, otherwise will load from file
  33. excluded_ids = [] # List of data ids to be excluded from the ensemble