12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- from torch import nn
- import utils.models.layers as ly
- import torch
- class Parameters:
- def __init__(self, param_dict):
- self.CNN_w_regularizer = param_dict["CNN_w_regularizer"]
- self.RNN_w_regularizer = param_dict["RNN_w_regularizer"]
- self.CNN_batch_size = param_dict["CNN_batch_size"]
- self.RNN_batch_size = param_dict["RNN_batch_size"]
- self.CNN_drop_rate = param_dict["CNN_drop_rate"]
- self.RNN_drop_rate = param_dict["RNN_drop_rate"]
- self.epochs = param_dict["epochs"]
- self.gpu = param_dict["gpu"]
- self.model_filepath = param_dict["model_filepath"] + "/net.h5"
- self.num_clinical = param_dict["num_clinical"]
- self.image_shape = param_dict["image_shape"]
- self.final_layer_size = param_dict["final_layer_size"]
- self.optimizer = param_dict["optimizer"]
- class CNN(nn.Module):
- def __init__(self, image_channels, clin_data_channels, droprate):
- super().__init__()
- # Image Section
- self.image_section = CNN_Image_Section(image_channels, droprate)
- # Data Layers, fully connected
- self.fc_clin1 = ly.FullConnBlock(clin_data_channels, 64, droprate=droprate)
- self.fc_clin2 = ly.FullConnBlock(64, 20, droprate=droprate)
- # Final Dense Layer
- self.dense1 = nn.Linear(40, 5)
- self.dense2 = nn.Linear(5, 2)
- self.softmax = nn.Softmax(dim=1)
- def forward(self, x):
- image, clin_data = x
- image = self.image_section(image)
- clin_data = self.fc_clin1(clin_data)
- clin_data = self.fc_clin2(clin_data)
- x = torch.cat((image, clin_data), dim=1)
- x = self.dense1(x)
- x = self.dense2(x)
- x = self.softmax(x)
- return x
- class CNN_Image_Section(nn.Module):
- def __init__(self, image_channels, droprate):
- super().__init__()
- # Initial Convolutional Blocks
- self.conv1 = ly.ConvBlock(
- image_channels,
- 192,
- (11, 13, 11),
- stride=(4, 4, 4),
- droprate=droprate,
- pool=False,
- )
- self.conv2 = ly.ConvBlock(192, 384, (5, 6, 5), droprate=droprate, pool=False)
- # Midflow Block
- self.midflow = ly.MidFlowBlock(384, droprate)
- # Split Convolutional Block
- self.splitconv = ly.SplitConvBlock(384, 192, 96, 1, droprate)
- # Fully Connected Block
- self.fc_image = ly.FullConnBlock(227136, 20, droprate=droprate)
- def forward(self, x):
- x = self.conv1(x)
- x = self.conv2(x)
- x = self.midflow(x)
- x = self.splitconv(x)
- x = torch.flatten(x, 1)
- x = self.fc_image(x)
- return x
|