# Get Python six functionality: from __future__ import\ absolute_import, print_function, division, unicode_literals ############################################################################### ############################################################################### ############################################################################### from .base import NotAnalyzeableModelException from .deeplift import DeepLIFT from .deeplift import DeepLIFTWrapper from .gradient_based import BaselineGradient from .gradient_based import Gradient from .gradient_based import InputTimesGradient from .gradient_based import GuidedBackprop from .gradient_based import Deconvnet from .gradient_based import IntegratedGradients from .gradient_based import SmoothGrad from .misc import Input from .misc import Random from .pattern_based import PatternNet from .pattern_based import PatternAttribution from .relevance_based.relevance_analyzer import BaselineLRPZ from .relevance_based.relevance_analyzer import LRP from .relevance_based.relevance_analyzer import LRPZ from .relevance_based.relevance_analyzer import LRPZIgnoreBias from .relevance_based.relevance_analyzer import LRPZPlus from .relevance_based.relevance_analyzer import LRPZPlusFast from .relevance_based.relevance_analyzer import LRPEpsilon from .relevance_based.relevance_analyzer import LRPEpsilonIgnoreBias from .relevance_based.relevance_analyzer import LRPWSquare from .relevance_based.relevance_analyzer import LRPFlat from .relevance_based.relevance_analyzer import LRPAlphaBeta from .relevance_based.relevance_analyzer import LRPAlpha2Beta1 from .relevance_based.relevance_analyzer import LRPAlpha2Beta1IgnoreBias from .relevance_based.relevance_analyzer import LRPAlpha1Beta0 from .relevance_based.relevance_analyzer import LRPAlpha1Beta0IgnoreBias from .relevance_based.relevance_analyzer import LRPSequentialPresetA from .relevance_based.relevance_analyzer import LRPSequentialPresetB from .relevance_based.relevance_analyzer import LRPSequentialPresetAFlat from .relevance_based.relevance_analyzer import LRPSequentialPresetBFlat from .relevance_based.relevance_analyzer import LRPSequentialPresetBFlatUntilIdx from .deeptaylor import DeepTaylor from .deeptaylor import BoundedDeepTaylor from .wrapper import WrapperBase from .wrapper import AugmentReduceBase from .wrapper import GaussianSmoother from .wrapper import PathIntegrator # Disable pyflaks warnings: assert NotAnalyzeableModelException assert DeepLIFT assert BaselineLRPZ assert WrapperBase assert AugmentReduceBase assert GaussianSmoother assert PathIntegrator ############################################################################### ############################################################################### ############################################################################### analyzers = { # Utility. "input": Input, "random": Random, # Gradient based "gradient": Gradient, "gradient.baseline": BaselineGradient, "input_t_gradient": InputTimesGradient, "deconvnet": Deconvnet, "guided_backprop": GuidedBackprop, "integrated_gradients": IntegratedGradients, "smoothgrad": SmoothGrad, # Relevance based "lrp": LRP, "lrp.z": LRPZ, "lrp.z_IB": LRPZIgnoreBias, "lrp.epsilon": LRPEpsilon, "lrp.epsilon_IB": LRPEpsilonIgnoreBias, "lrp.w_square": LRPWSquare, "lrp.flat": LRPFlat, "lrp.alpha_beta": LRPAlphaBeta, "lrp.alpha_2_beta_1": LRPAlpha2Beta1, "lrp.alpha_2_beta_1_IB": LRPAlpha2Beta1IgnoreBias, "lrp.alpha_1_beta_0": LRPAlpha1Beta0, "lrp.alpha_1_beta_0_IB": LRPAlpha1Beta0IgnoreBias, "lrp.z_plus": LRPZPlus, "lrp.z_plus_fast": LRPZPlusFast, "lrp.sequential_preset_a": LRPSequentialPresetA, "lrp.sequential_preset_b": LRPSequentialPresetB, "lrp.sequential_preset_a_flat": LRPSequentialPresetAFlat, "lrp.sequential_preset_b_flat": LRPSequentialPresetBFlat, "lrp.sequential_preset_b_flat_until_idx": LRPSequentialPresetBFlatUntilIdx, # Deep Taylor "deep_taylor": DeepTaylor, "deep_taylor.bounded": BoundedDeepTaylor, # DeepLIFT #"deep_lift": DeepLIFT, "deep_lift.wrapper": DeepLIFTWrapper, # Pattern based "pattern.net": PatternNet, "pattern.attr": PatternAttribution, } def create_analyzer(name, model, **kwargs): """Instantiates the analyzer with the name 'name' This convenience function takes an analyzer name creates the respective analyzer. Alternatively analyzers can be created directly by instantiating the respective classes. :param name: Name of the analyzer. :param model: The model to analyze, passed to the analyzer's __init__. :param kwargs: Additional parameters for the analyzer's . :return: An instance of the chosen analyzer. :raise KeyError: If there is no analyzer with the passed name. """ try: analyzer_class = analyzers[name] except KeyError: raise KeyError( "No analyzer with the name '%s' could be found." " All possible names are: %s" % (name, list(analyzers.keys()))) return analyzer_class(model, **kwargs)