preprocess.py 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128
  1. # NEEDS TO BE FINISHED
  2. # TODO CHECK ABOUT IMAGE DIMENSIONS
  3. # TODO ENSURE ITERATION WORKS
  4. import glob
  5. import nibabel as nib
  6. import numpy as np
  7. import random
  8. import torch
  9. from torch.utils.data import Dataset
  10. import pandas as pd
  11. '''
  12. Prepares CustomDatasets for training, validating, and testing CNN
  13. '''
  14. def prepare_datasets(mri_dir, xls_file, val_split=0.2, seed=50):
  15. rndm = random.Random(seed)
  16. xls_data = pd.read_csv(xls_file).set_index('Image Data ID')
  17. raw_data = glob.glob(mri_dir + "*")
  18. AD_list = []
  19. NL_list = []
  20. print("--- DATA INFO ---")
  21. print("Amount of images: " + str(len(raw_data)))
  22. # TODO Check that image is in CSV?
  23. for image in raw_data:
  24. if "NL" in image:
  25. NL_list.append(image)
  26. elif "AD" in image:
  27. AD_list.append(image)
  28. print("Total AD: " + str(len(AD_list)))
  29. print("Total NL: " + str(len(NL_list)))
  30. rndm.shuffle(AD_list)
  31. rndm.shuffle(NL_list)
  32. train_list, val_list, test_list = get_train_val_test(AD_list, NL_list, val_split)
  33. rndm.shuffle(train_list)
  34. rndm.shuffle(val_list)
  35. rndm.shuffle(test_list)
  36. train_dataset = CustomDataset(train_list, xls_data)
  37. val_dataset = CustomDataset(val_list, xls_data)
  38. test_dataset = CustomDataset(test_list, xls_data)
  39. return train_dataset, val_dataset, test_dataset
  40. # TODO Normalize data? Later add / Exctract clinical data? Which data?
  41. '''
  42. Returns train_list, val_list and test_list in format [(image, id), ...] each
  43. '''
  44. def get_train_val_test(AD_list, NL_list, val_split):
  45. train_list, val_list, test_list = [], [], []
  46. num_test_ad = int(len(AD_list) * val_split)
  47. num_test_nl = int(len(NL_list) * val_split)
  48. num_val_ad = int((len(AD_list) - num_test_ad) * val_split)
  49. num_val_nl = int((len(NL_list) - num_test_nl) * val_split)
  50. # Sets up ADs
  51. for image in AD_list[0:num_val_ad]:
  52. val_list.append((image, 1))
  53. for image in AD_list[num_val_ad:num_test_ad]:
  54. test_list.append((image, 1))
  55. for image in AD_list[num_test_ad:]:
  56. train_list.append((image, 1))
  57. # Sets up NLs
  58. for image in NL_list[0:num_val_nl]:
  59. val_list.append((image, 0))
  60. for image in NL_list[num_val_nl:num_test_nl]:
  61. test_list.append((image, 0))
  62. for image in NL_list[num_test_nl:]:
  63. train_list.append((image, 0))
  64. return train_list, val_list, test_list
  65. class CustomDataset(Dataset):
  66. def __init__(self, mri, xls: pd.DataFrame):
  67. self.mri_data = mri # DATA IS A LIST WITH TUPLES (image_dir, class_id)
  68. self.xls_data = xls
  69. def __len__(self):
  70. return len(self.mri_data)
  71. def _xls_to_tensor(self, xls_data: pd.Series):
  72. #Get used data
  73. #data = xls_data.loc[['Sex', 'Age (current)', 'PTID', 'DXCONFID (1=uncertain, 2= mild, 3= moderate, 4=high confidence)', 'Alz_csf']]
  74. data = xls_data.loc[['Sex', 'Age (current)']]
  75. data.replace({'M': 0, 'F': 1}, inplace=True)
  76. #Convert to tensor
  77. xls_tensor = torch.tensor(data.values.astype(float))
  78. return xls_tensor
  79. def __getitem__(self, idx): # RETURNS TUPLE WITH IMAGE AND CLASS_ID, BASED ON INDEX IDX
  80. mri_path, class_id = self.mri_data[idx]
  81. mri = nib.load(mri_path)
  82. mri_data = mri.get_fdata()
  83. xls = self.xls_data.iloc[idx]
  84. #Convert xls data to tensor
  85. xls_tensor = self._xls_to_tensor(xls)
  86. mri_tensor = torch.from_numpy(mri_data).unsqueeze(0)
  87. class_id = torch.tensor([class_id])
  88. return mri_tensor, xls_tensor, class_id