123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- from torch import nn
- from torchvision.transforms import ToTensor
- import os
- import pandas as pd
- import numpy as np
- import utils.layers as ly
- import torch
- import torchvision
- class Parameters:
- def __init__(self, param_dict):
- self.CNN_w_regularizer = param_dict["CNN_w_regularizer"]
- self.RNN_w_regularizer = param_dict["RNN_w_regularizer"]
- self.CNN_batch_size = param_dict["CNN_batch_size"]
- self.RNN_batch_size = param_dict["RNN_batch_size"]
- self.CNN_drop_rate = param_dict["CNN_drop_rate"]
- self.RNN_drop_rate = param_dict["RNN_drop_rate"]
- self.epochs = param_dict["epochs"]
- self.gpu = param_dict["gpu"]
- self.model_filepath = param_dict["model_filepath"] + "/net.h5"
- self.num_clinical = param_dict["num_clinical"]
- self.image_shape = param_dict["image_shape"]
- self.final_layer_size = param_dict["final_layer_size"]
- self.optimizer = param_dict["optimizer"]
- class CNN_Net(nn.Module):
- def __init__(self, image_channels, clin_data_channels, droprate):
- super().__init__()
- # Initial Convolutional Blocks
- self.conv1 = ly.ConvolutionalBlock(
- image_channels, 192, (11, 13, 11), stride=(4, 4, 4), droprate=droprate, pool=True
- )
- self.conv2 = ly.ConvolutionalBlock(
- 192, 384, (5, 6, 5), droprate=droprate, pool=True
- )
- # Midflow Block
- self.midflow = ly.MidFlowBlock(384, droprate)
-
- # Split Convolutional Block
- self.splitconv = ly.SplitConvBlock(384, 192, 96, 4, droprate)
- #Fully Connected Block
- self.fc_image = ly.FullyConnectedBlock(96, 20, droprate=droprate)
- #Data Layers, fully connected
- self.fc_clin1 = ly.FullyConnectedBlock(clin_data_channels, 64, droprate=droprate)
- self.fc_clin2 = ly.FullyConnectedBlock(64, 20, droprate=droprate)
-
- #Final Dense Layer
- self.dense1 = nn.Linear(40, 5)
- self.dense2 = nn.Linear(5, 2)
- self.softmax = nn.Softmax()
-
- def forward(self, x):
- image, clin_data = x
- print("Input image shape:", image.shape)
-
- image = self.conv1(image)
- print("Conv1 shape:", image.shape)
- image = self.conv2(image)
- print("Conv2 shape:", image.shape)
- image = self.midflow(image)
- print("Midflow shape:", image.shape)
- image = self.splitconv(image)
- print("Splitconv shape:", image.shape)
- image = torch.flatten(image, 1)
- print("Flatten shape:", image.shape)
- image = self.fc_image(image)
- clin_data = self.fc_clin1(clin_data)
- clin_data = self.fc_clin2(clin_data)
- x = torch.cat((image, clin_data), dim=1)
- x = self.dense1(x)
- x = self.dense2(x)
- x = self.softmax(x)
- return x
-
|