training.py 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197
  1. import torch
  2. from tqdm import tqdm
  3. import os
  4. from utils.preprocess import prepare_datasets
  5. from torch.utils.data import DataLoader
  6. import pandas as pd
  7. import matplotlib.pyplot as plt
  8. from sklearn.metrics import ConfusionMatrixDisplay, roc_curve, roc_auc_score, RocCurveDisplay
  9. import numpy as np
  10. def train_model(model, seed, timestamp, epochs, train_loader, val_loader, saved_model_path, model_name, optimizer, criterion, cuda_device=torch.device('cuda:0')):
  11. epoch_number = 0
  12. train_losses = []
  13. train_accs = []
  14. val_losses = []
  15. val_accs = []
  16. for epoch in range(epochs):
  17. train_loss = 0
  18. train_incc = 0
  19. train_corr = 0
  20. #Training
  21. train_length = len(train_loader)
  22. for _, data in tqdm(enumerate(train_loader, 0), total=train_length, desc="Epoch " + str(epoch) + "/" + str(epochs), unit="batch"):
  23. mri, xls, label = data
  24. optimizer.zero_grad()
  25. mri = mri.to(cuda_device).float()
  26. xls = xls.to(cuda_device).float()
  27. label = label.to(cuda_device).float()
  28. outputs = model((mri, xls))
  29. loss = criterion(outputs, label)
  30. loss.backward()
  31. optimizer.step()
  32. train_loss += loss.item()
  33. #Calculate Correct and Incorrect Predictions
  34. _, predicted = torch.max(outputs.data, 1)
  35. _, labels = torch.max(label.data, 1)
  36. train_corr += (predicted == labels).sum().item()
  37. train_incc += (predicted != labels).sum().item()
  38. train_losses.append(train_loss / train_length)
  39. train_accs.append(train_corr / (train_corr + train_incc))
  40. #Validation
  41. with torch.no_grad():
  42. val_loss = 0
  43. val_incc = 0
  44. val_corr = 0
  45. val_length = len(val_loader)
  46. for _, data in enumerate(val_loader, 0):
  47. mri, xls, label = data
  48. mri = mri.to(cuda_device).float()
  49. xls = xls.to(cuda_device).float()
  50. label = label.to(cuda_device).float()
  51. outputs = model((mri, xls))
  52. loss = criterion(outputs, label)
  53. val_loss += loss.item()
  54. _, predicted = torch.max(outputs.data, 1)
  55. _, labels = torch.max(label.data, 1)
  56. val_corr += (predicted == labels).sum().item()
  57. val_incc += (predicted != labels).sum().item()
  58. val_losses.append(val_loss / val_length)
  59. val_accs.append(val_corr / (val_corr + val_incc))
  60. epoch_number += 1
  61. print("--- SAVING MODEL ---")
  62. if not os.path.exists(saved_model_path):
  63. os.makedirs(saved_model_path)
  64. torch.save(model, saved_model_path + model_name + "_t-" + timestamp + "_s-" + str(seed) + "_e-" + str(epochs) + ".pkl")
  65. #Create dataframe with training and validation losses and accuracies, set index to epoch
  66. df = pd.DataFrame()
  67. df["train_loss"] = train_losses
  68. df["train_acc"] = train_accs
  69. df["val_loss"] = val_losses
  70. df["val_acc"] = val_accs
  71. df.index.name = "epoch"
  72. return df
  73. def test_model(model, test_loader, cuda_device=torch.device('cuda:0')):
  74. #Test model
  75. correct = 0
  76. incorrect = 0
  77. predictions = []
  78. actual = []
  79. with torch.no_grad():
  80. length = len(test_loader)
  81. for i, data in tqdm(enumerate(test_loader, 0), total=length, desc="Testing", unit="batch"):
  82. mri, xls, label = data
  83. mri = mri.to(cuda_device).float()
  84. xls = xls.to(cuda_device).float()
  85. label = label.to(cuda_device).float()
  86. outputs = model((mri, xls))
  87. _, predicted = torch.max(outputs.data, 1)
  88. _, labels = torch.max(label.data, 1)
  89. incorrect += (predicted != labels).sum().item()
  90. correct += (predicted == labels).sum().item()
  91. predictions.extend(predicted.tolist())
  92. actual.extend(labels.tolist())
  93. return predictions, actual, correct, incorrect
  94. def initalize_dataloaders(mri_path, xls_path, val_split, seed, cuda_device=torch.device('cuda:0'), batch_size=64):
  95. training_data, val_data, test_data = prepare_datasets(mri_path, xls_path, val_split, seed)
  96. train_dataloader = DataLoader(training_data, batch_size=batch_size, shuffle=True, generator=torch.Generator(device=cuda_device))
  97. test_dataloader = DataLoader(test_data, batch_size=(batch_size // 4), shuffle=True, generator=torch.Generator(device=cuda_device))
  98. val_dataloader = DataLoader(val_data, batch_size=batch_size, shuffle=True, generator=torch.Generator(device=cuda_device))
  99. return train_dataloader, val_dataloader, test_dataloader
  100. def plot_results(train_acc, train_loss, val_acc, val_loss, model_name, timestamp, plot_path):
  101. #Create 2 plots, one for accuracy and one for loss
  102. if not os.path.exists(plot_path):
  103. os.makedirs(plot_path)
  104. #Accuracy Plot
  105. plt.figure()
  106. plt.plot(train_acc, label="Training Accuracy")
  107. plt.plot(val_acc, label="Validation Accuracy")
  108. plt.xlabel("Epoch")
  109. plt.ylabel("Accuracy")
  110. plt.title("Accuracy of " + model_name + " Model: " + timestamp)
  111. plt.legend()
  112. plt.savefig(plot_path + model_name + "_t-" + timestamp + "_acc.png")
  113. plt.close()
  114. #Loss Plot
  115. plt.figure()
  116. plt.plot(train_loss, label="Training Loss")
  117. plt.plot(val_loss, label="Validation Loss")
  118. plt.xlabel("Epoch")
  119. plt.ylabel("Loss")
  120. plt.title("Loss of " + model_name + " Model: " + timestamp)
  121. plt.legend()
  122. plt.savefig(plot_path + model_name + "_t-" + timestamp + "_loss.png")
  123. plt.close()
  124. def plot_confusion_matrix(predicted, actual, model_name, timestamp, plot_path):
  125. #Create confusion matrix
  126. if not os.path.exists(plot_path):
  127. os.makedirs(plot_path)
  128. ConfusionMatrixDisplay.from_predictions(predicted, actual).plot()
  129. plt.savefig(plot_path + model_name + "_t-" + timestamp + "_confusion_matrix.png")
  130. plt.close()
  131. def plot_roc_curve(predicted, actual, model_name, timestamp, plot_path):
  132. #Create ROC Curve
  133. if not os.path.exists(plot_path):
  134. os.makedirs(plot_path)
  135. np.array(predicted, dtype=np.float64)
  136. np.array(actual, dtype=np.float64)
  137. fpr, tpr, _ = roc_curve(actual, predicted)
  138. print(fpr, tpr)
  139. auc = roc_auc_score(actual, predicted)
  140. plt.figure()
  141. RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=auc).plot()
  142. plt.savefig(plot_path + model_name + "_t-" + timestamp + "_roc_curve.png")
  143. plt.close()