Ver código fonte

Upload files to 'pythonScripts'

Jakob Brakovič 1 mês atrás
pai
commit
7c68c97b69
1 arquivos alterados com 222 adições e 0 exclusões
  1. 222 0
      pythonScripts/risanje grafov_IVP.py

+ 222 - 0
pythonScripts/risanje grafov_IVP.py

@@ -0,0 +1,222 @@
+import numpy as np
+import matplotlib.pyplot as plt
+import os
+import cModel
+import time
+import pdfkit
+import tempfile
+import runSolver
+import io
+import importlib
+#Nariše graf iz IVP modelov
+importlib.reload(cModel)
+importlib.reload(runSolver)
+
+def getModel(solution, modelName):
+    """
+    Load and parse the model from the given solution dictionary using the modelName.
+    """
+    Q = solution[modelName]  # Retrieve the solution dictionary for the specified model
+    model = cModel.model()  # Create an instance of the cModel class
+    setupFile = Q['setup']  # Get the setup file path from the solution
+    modelFile = Q['model']  # Get the model file path from the solution
+    parameterFile = Q['parameters']  # Get the parameter file path from the solution
+    print('modelFile: {} {}'.format(modelFile, os.path.isfile(modelFile)))  # Print the model file path and its existence status
+    print('parameterFile: {} {}'.format(parameterFile, os.path.isfile(parameterFile)))  # Print the parameter file path and its existence status
+    model.parse(modelFile, parameterFile)  # Parse the model file with the given parameters
+    return model  # Return the loaded model
+
+def mergeSolutions(seq):
+    """
+    Merge multiple solution dictionaries into a single dictionary.
+    """
+    out = {}
+    for v in ['t', 'sol', 'se', 'qt', 'sOut']:  # Merge arrays from each solution
+        out[v] = np.concatenate([x[v] for x in seq])
+    for v in ['lut', 'lutSE', 'setup', 'model', 'parameters', 'qt', 'sOut']:  # Use data from the last solution for these keys
+        out[v] = seq[-1][v]
+    return out  # Return the merged dictionary
+
+# Define paths
+fh = os.path.expanduser('~')
+
+# Define job configurations for loading
+job_configs = {
+    'cDiazepam_IVP': {
+        'jobDir': os.path.join(fh, 'Documents', 'Sola', 'IJS', 'PBPK_public', 'cDiazepam_IVP')
+    },
+    'cDiazepam1_IVP': {
+        'jobDir': os.path.join(fh, 'Documents', 'Sola', 'IJS', 'PBPK_public', 'cDiazepam1_IVP')
+    },
+    'cDiazepamF_IVP': {
+        'jobDir': os.path.join(fh, 'Documents', 'Sola', 'IJS', 'PBPK_public', 'cDiazepamF_IVP')
+    },
+    'cDiazepamB_IVP': {
+        'jobDir': os.path.join(fh, 'Documents', 'Sola', 'IJS', 'PBPK_public', 'cDiazepamB_IVP')
+    }
+}
+
+# Load and merge solutions
+solution = {}
+for modelName, job in job_configs.items():
+    seq = [runSolver.loadSolutionFromDir(job['jobDir'], True)]
+    solution[modelName] = mergeSolutions(seq)
+
+def analyze_model(model, setup):
+    """
+    Perform matrix operations and print results.
+    """
+    tscale = runSolver.getScale(setup)  # Get the time scale from the setup
+    print(f'tscale={tscale}')  # Print the time scale
+    model.inspect()  # Inspect the model
+    
+    print("***********done************")
+    print(model.M(1).shape)  # Print the shape of the matrix from the model
+    print(model.m)  # Print the model parameters
+
+    nt = setup['nt']  # Number of time points
+    qtmax = 1  # Maximum time (minute)
+    qt = np.linspace(0, qtmax, nt)  # Generate time points
+    par = 'venousInput'  # Parameter to plot
+
+    # Plot parameters
+    try:
+        hw = model.get(par)  # Get the parameter from the model
+        print(hw)  # Print the parameter information
+        ht = [10 * hw['value'](x) for x in qt]  # Calculate parameter values over time
+        plt.plot(qt / tscale, ht)  # Plot the parameter values
+    except (KeyError, TypeError):  # Handle errors if the parameter is not found
+        print(f'Troubles getting {par}')
+        pass
+
+    # Measure performance of matrix operations
+    start_time = time.time()  # Record start time
+    for i in range(100000):  # Perform matrix operations 100,000 times
+        model.M(1e7)  # Call the matrix operation
+    end_time = time.time()  # Record end time
+    print('Time: {:.3f} s'.format(end_time - start_time))  # Print elapsed time
+
+    fM = model.M(0)  # Get the matrix from the model
+    print('Rank: {}/{}'.format(np.linalg.matrix_rank(fM), fM.shape))  # Print the rank of the matrix
+
+    np.set_printoptions(suppress=True, precision=2, linewidth=150)  # Set NumPy print options
+    print(f'{fM}')  # Print the matrix
+
+    v, Q = np.linalg.eig(fM)  # Perform eigenvalue decomposition
+    np.set_printoptions(suppress=False)  # Reset NumPy print options
+    print(Q[:, 2:4])  # Print selected eigenvectors
+
+    Q1 = np.linalg.inv(Q)  # Calculate the inverse of the eigenvector matrix
+    D = np.diag(v)  # Create a diagonal matrix of eigenvalues
+
+    t = np.linspace(0, 100, 101)  # Generate time points for plotting
+    fy = [model.u(x)[14] for x in t]  # Calculate model output over time
+    print('{} {}'.format(len(fy), len(t)))  # Print lengths of output and time points
+    plt.figure()  # Create a new figure
+    plt.plot(fy)  # Plot the model output
+    fu = model.u(0)  # Get the model output at time 0
+    print(Q1 @ fu)  # Print the result of the matrix multiplication
+
+def plot_results(solution, modelName):
+    """
+    Plot results for the specified model from the solution.
+    """
+    model = getModel(solution, modelName)  # Load the model
+    setup = solution[modelName]['setup']  # Get the setup from the solution
+    tscale = runSolver.getScale(setup)  # Get the time scale
+    print(f'tscale={tscale}')  # Print the time scale
+    model.inspect()  # Inspect the model
+
+    name = ['venous', 'adipose', 'brain', 'heart', 'kidney', 'liver', 'lung', 'muscle', 'skin', 'stomach', 'splanchnic', 'excrement']  # Compartment names
+    tmax = solution[modelName]['t'][-1]  # Get the maximum time from the solution
+
+    # Define colors and shading for models
+    models = {
+        'cDiazepam_IVP': {'color': 'orange', 'shadeColor': 'red'},
+        'cDiazepamF_IVP': {'color': 'blue', 'shadeColor': 'green'},
+        'cDiazepam1_IVP': {'color': 'black', 'shadeColor': 'yellow'},
+        'cDiazepamB_IVP': {'color': 'purple', 'shadeColor': 'gold'}
+    }
+
+    fig, axs = plt.subplots(4, 3, figsize=(15, 20))  # Create a grid of subplots
+
+    for i in range(len(name)):  # Loop over each compartment
+        row = i // 3  # Determine row index
+        col = i % 3  # Determine column index
+        ax = axs[row, col]  # Get the subplot
+
+        for m in models:  # Loop over each model
+            fM = models[m]  # Get model configuration
+            Q = solution[m]  # Get solution for the model
+            v = name[i]  # Get the compartment name
+
+            try:
+                j = Q['lut'][v]  # Get the index for the compartment
+            except KeyError:
+                try:
+                    v1 = alias[v]  # Handle alias if needed
+                    j = Q['lut'][v1]  # Get the index for the alias
+                except KeyError:
+                    print(f'No data for {v}/{v1}')  # Print error if compartment not found
+                    continue
+
+            fy = Q['sol'][:, j]  # Get the solution for the compartment
+            fe = Q['se'][:, j]  # Get the standard error for the compartment
+            t = Q['t']  # Get the time points
+
+            # Plot the mean values and confidence intervals
+            ax.plot(t / tscale, fy, color=fM['color'], label=f'{m} Mean')
+            ax.fill_between(t / tscale, fy - fe, fy + fe, color=fM['shadeColor'], alpha=0.1)  # Shaded area for confidence intervals
+            ax.plot(t / tscale, fy - fe, color=fM['shadeColor'], linewidth=1, alpha=0.2)  # Lower bound
+            ax.plot(t / tscale, fy + fe, color=fM['shadeColor'], linewidth=1, alpha=0.2)  # Upper bound
+
+        # Find the maximum y-value including confidence intervals
+        max_y_value = max(np.max(fy + fe), np.max(fy - fe))  
+        ax.set_ylim([0, min(max_y_value, 10000)])  # Set y-axis limit to max value or 5500, whichever is smaller
+        ax.set_xlim([0, 1.1 * tmax / tscale])  # Set x-axis limits
+        ax.set_xlabel(setup['tUnit'])  # Set x-axis label
+        ax.set_title(name[i])  # Set plot title
+        ax.legend()  # Add legend
+
+    output_file = os.path.join(fh, 'Documents', 'Sola', 'IJS', 'PBPK_public', 'results', 'plot.png')  # Define output file path
+    plt.savefig(output_file)  # Save the plot to file
+    plt.show()  # Display the plot
+
+
+def main():
+    """
+    Main function to load data, analyze model, and plot results.
+    """
+    fh = os.path.expanduser('~')  # Define file path root
+
+    # Define job configurations for loading
+    job_configs = {
+        'cDiazepam_IVP': {
+            'jobDir': os.path.join(fh, 'Documents', 'Sola', 'IJS', 'PBPK_public', 'cDiazepam_IVP')
+        },
+        'cDiazepam1_IVP': {
+            'jobDir': os.path.join(fh, 'Documents', 'Sola', 'IJS', 'PBPK_public', 'cDiazepam1_IVP')
+        },
+        'cDiazepamF_IVP': {
+            'jobDir': os.path.join(fh, 'Documents', 'Sola', 'IJS', 'PBPK_public', 'cDiazepamF_IVP')
+        },
+        'cDiazepamB_IVP': {
+            'jobDir': os.path.join(fh, 'Documents', 'Sola', 'IJS', 'PBPK_public', 'cDiazepamB_IVP')
+        }
+    }
+
+    # Load and merge solutions
+    solution = {}
+    for modelName, job in job_configs.items():
+        seq = [runSolver.loadSolutionFromDir(job['jobDir'], True)]  # Load solution from directory
+        solution[modelName] = mergeSolutions(seq)  # Merge solutions
+    # Capture print output
+    output_stream = io.StringIO()
+    analyze_model(getModel(solution, 'cDiazepamF_IVP'), solution['cDiazepamF_IVP']['setup'])  # Analyze the model
+    analysis_results = analyze_model(getModel(solution, 'cDiazepamF_IVP'), solution['cDiazepamF_IVP']['setup'])
+    plot_results(solution, 'cDiazepamF_IVP')  # Plot the results
+
+    
+
+if __name__ == "__main__":
+    main()  # Execute the main function