{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy\n", "import matplotlib.pyplot\n", "import os\n", "import scipy.interpolate\n", "import convolveLN\n", "import propagateErrorLN\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.9999999999999999 1.0000000000000002 0.9999999999999997\n" ] }, { "data": { "text/plain": [ "[]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3Qc9Xn/8fezu7patmzL8t1GvmFj7qCYFByS4EANpDj8AgmUtJDSkKShCT9OGpwLNCFpCvmdQnIKSQOFhJC2hpAmNdjE5RbAAYzlG8bYBtn4Il91s2Rd9/b8/piRWGQZraxdze7M8zpnz87OfHf2WTj+7FffmfmOqCrGGGP8K+R1AcYYY7LLgt4YY3zOgt4YY3zOgt4YY3zOgt4YY3wu4nUBfY0bN06rqqq8LsMYY/LKunXrGlS1sr9tORf0VVVV1NTUeF2GMcbkFRHZfbxtNnRjjDE+Z0FvjDE+Z0FvjDE+Z0FvjDE+Z0FvjDE+Z0FvjDE+Z0FvjDE+Z0Hfl03bbIzxGQv6VJtuh8eKYPlseG4RbLvX64qMMWbILOhT7V8JpdOhYgE792wjvu7rnPXt//K6KmOMGRIL+h6JbqKNb/CznWdT9eR1fHXPN4hIkotHrfG6MmOMGRIL+h4tWygMxXmzcxYAb3bOYm90ApeVr/a4MGOMGRoL+h5N6wHY3DnbXSGsbLmAC8o2QbTZu7qMMWaILOh7NK2jNTGCPdGJvatWHrmAwlAc6p70sDBjjBmatIJeRBaLyHYRqRWRpf1sLxKRx9zta0SkKmXbGSLyqohsEZHNIlKcufIzqHk9WzpnAtK7alPnyeyLVsLeJ7yryxhjhmjAoBeRMHA/cCkwH7hWROb3aXYj0Kyqs4F7gbvd90aAXwNfUtVTgY8BsYxVnynJGDRvShm26SE83XI+HFgF0RZPSjPGmKFKp0e/AKhV1Z2qGgWWAUv6tFkCPOIuPwEsEhEBLgHeUNVNAKraqKqJzJSeQS1bIdndeyA21cqWhZCMwr6nPCjMGGOGLp2gnwLsTXld567rt42qxoEWoAI4GVARWSUi60XkG0MvOQuanQOxW/oJ+g0dc6Fkig3fGGPyVrYPxkaAhcB17vOVIrKobyMRuUlEakSkpr6+Pssl9aNpHUTK2Nnd9/cLlBBMXQIHn4FkfPhrM8aYIUon6PcB01JeT3XX9dvGHZcvBxpxev8vqWqDqnYAK4Fz+n6Aqj6gqtWqWl1Z2e+9bbOraT2MOcsJ9f5ULoR4OxzZPLx1GWNMBqQT9GuBOSIyQ0QKgWuA5X3aLAeud5evAp5XVQVWAaeLSKn7A/BR4K3MlJ4hyQQ0b4Sx5x63yQUPdQHwnYceHK6qjDEmYyIDNVDVuIjcjBPaYeBhVd0iIncCNaq6HHgIeFREaoEmnB8DVLVZRO7B+bFQYKWqrsjSdzkxR7dDogPGHPOHRq99sUoOxcZybunWYSzMGGMyY8CgB1DVlTjDLqnr7khZ7gKuPs57f41zimVOuuVnD/Pj6XDJI0dxjh/3R1jXPo9zSrcNZ2nGGJMRgb8y9rSSWjqTRezonvaB7dZ3zOOkooPQeWiYKjPGmMwIfNBPLzzE7u6JJAh/YLv1Hac4Cw2vDkNVxhiTOYEP+tGRVpoTowZst6VzFt3JiAW9MSbvBD7ox4ZbaYoPHPTdWuhcUNXwyjBUZYwxmRP4oB8dOcqRxMi02q7rOAWaaiARzXJVxhiTOcEOek0yOnyUpnh5Ws3Xd8yDRJdz3r0xxuSJYAd9rIWIJNPv0bfbAVljTP4JdtB3NwKkNUYPcDhe4dw83MbpjTF5JOBB3wBAc5o9egDG/Zn16I0xeSXgQe/06I+k2aMHoGIBdOyFrsNZKsoYYzIr4EHv9Oib0jiPvlfP5GdN67JQkDHGZF7Ag76nRz+IoZuxZzvPFvTGmDwR7KCPNhLXEK3JEem/p2AUjJprQW+MyRvBDvruBprjowAZ3PvGnOtcOGWMMXkg4EHfmPY59D2qlq7g+6+WQEedHZA1xuSFgAd9Q9rn0Kd6s3O2s2DDN8aYPBDwoB98jx6cmSyTKhb0xpi8EPCgP7EefVuylHe7p9g4vTEmLwQ36FUh2siRwZxDn2Jz5yzr0Rtj8kJwgz7eBsnY4KY/SLG5c7YdkDXG5IXgBn3PPDcnMHQDsLlzjrNgvXpjTI4LcNA7V8WmcxvB/mzpnAkINNo4vTEmtwU46N15bk6wR9+eLIVRJ0Oz9eiNMbktwEHvznNzgmP0gHuFrAW9MSa3pRX0IrJYRLaLSK2ILO1ne5GIPOZuXyMiVe76KhHpFJGN7uPfMlv+EAyxRw84M1naAVljTI4bMOhFJAzcD1wKzAeuFZH5fZrdCDSr6mzgXuDulG07VPUs9/GlDNU9dNFGQGhNDGJCs75symJjTB5Ip0e/AKhV1Z2qGgWWAUv6tFkCPOIuPwEsEpFBzhQ2zLoboXAMScInvg+bstgYkwfSCfopwN6U13Xuun7bqGocaAEq3G0zRGSDiLwoIh8ZYr2Z090AReOGtIuq219mR/cUVr28IkNFGWNM5kWyvP8DwHRVbRSRc4Hfi8ipqtqa2khEbgJuApg+fXqWS3J1N0JRxcDtBvBmx2yqR7yVgYKMMSY70unR7wOmpbye6q7rt42IRIByoFFVu1W1EUBV1wE7gJP7foCqPqCq1apaXVlZOfhvcSIy0KMHZyqEKYX10FWfgaKMMSbz0gn6tcAcEZkhIoXANcDyPm2WA9e7y1cBz6uqikilezAXEZkJzAF2Zqb0IYpmpke/pXfK4vVD3pcxxmTDgEHvjrnfDKwCtgKPq+oWEblTRK5wmz0EVIhILXAr0HMK5oXAGyKyEecg7ZdUtSnTX+KEdDdAYQaGbjpnOQt24ZQxJkelNUavqiuBlX3W3ZGy3AVc3c/7fgv8dog1Zl68AxJdGRm6OZocwbvdk5hhZ94YY3JUMK+Mda+KzcTQDbh3nLKgN8bkqIAGvXNVbCZ69OBOWdy++70fEGOMySHBDPpoZnv0mzucA7J/9f9+StVSO6feGJNbghn0XW6PPgMHY8G5hyzA6SW1GdmfMcZkUjCDvrdHn5mhm9ZkGbu7J3JqyY6M7M8YYzIpmEHfO0Y/NmO73Nw523r0xpicFNCgb4SCcggVZGyXmztnM73oEGPCLRnbpzHGZEJwgz5DB2J7bOpwZnY4w3r1xpgcE8ygj7VCwRBuONKPzZ2zSapwRunbGd2vMcYMVTCDPtEOkSHccKQf7clSdnRP5UwLemNMjglk0G98dx8v7uzM+Dnvb3TM4cySd0A1o/s1xpihCGTQl4a66EgWZ3y/GztPprLgiHMfWWOMyRHBDfpE5oP+jY45zkLj6xnftzHGnKjgBn0WevRbu2YSTUagaW3G922MMScquEGvmQ/6qBawtWsGNFrQG2NyR/CCPpmgOBTNytANuMM3TTWgyazs3xhjBit4QZ9oB8jK0A3AG51znPP0W+00S2NMbghe0MedoO/MUtBvdK+QtXF6Y0yuCGzQt2cp6Hd0T6U9UcwvnvyNzU1vjMkJAQz6NiB7QzdJwrzZOZuzSmzoxhiTGwIY9Nkdowfnwqn5JTsolFjWPsMYY9IVvKCPZbdHD7C+fR5FobjdiMQYkxOCF/SJ7B6MBVjfMQ+Ac0q3Ze0zjDEmXcEL+iwfjAWoj49lb3QC55RuzdpnGGNMutIKehFZLCLbRaRWRJb2s71IRB5zt68Rkao+26eLSJuIfD0zZQ9Blg/G9ljfPo9zR2y1mSyNMZ4bMOhFJAzcD1wKzAeuFZH5fZrdCDSr6mzgXuDuPtvvAZ4eerkZkOXz6Hus65jHxIIm6Nib1c8xxpiBpNOjXwDUqupOVY0Cy4AlfdosAR5xl58AFomIAIjIp4B3gS2ZKXmIes+6Kcrqx6zvOMVZaHg1q59jjDEDSSfopwCp3dI6d12/bVQ1DrQAFSJSBtwGfG/opWZIvI2uZCFJwln9mG2dVc6PSf0rWf0cY4wZSLYPxn4XuFdV2z6okYjcJCI1IlJTX1+f3Yri7Vk9ENv7MUScCc6sR2+M8Vg6Qb8PmJbyeqq7rt82IhIByoFG4DzgRyKyC7gF+JaI3Nz3A1T1AVWtVtXqysrKQX+JQYm1ZX18vse6jlOgeQPEO4fl84wxpj/pBP1aYI6IzBCRQuAaYHmfNsuB693lq4Dn1fERVa1S1Srgx8APVfW+DNV+YhLtWT/jpsf69nmgcWfaYmOM8ciAQe+Oud8MrAK2Ao+r6hYRuVNErnCbPYQzJl8L3AoccwpmzogPY9C7F07RYOP0xhjvRNJppKorgZV91t2RstwFXD3APr57AvVlXrxt2IK+OVEOI22c3hjjrUBeGTscB2N7jTvfOfPGLpwyxngkkEE/XAdjAahcCN310Grz3hhjvBHAoB++oRsAxn/UeT784vB9pjHGpAhg0Ldn7cbg/Ro5G0omW9AbYzwTrKBXHf4evYjTqz/8oo3TG2M8EaygT3aDJoc36MEJ+s4DcPSd4f1cY4whaEE/DLcR7JeN0xtjPBSwoB+eueiPMWouFE+woDfGeCJgQe9Rj97G6Y0xHkrryljf8CDoq5auAOBzFRX8YEodtL8LZTOH7fONMSZgPXpn6GZYL5hyrWk7DYB/uP8nveFvjDHDIWBBn/0bgx/PO93TaYyP4sMj3hz2zzbGBFuwgj7m0cFYAIQ1badxXtlmwMbpjTHDJ1hBnxieG4Mfz6vtZzC1sJ6TCg948vnGmGAKVtB7OHQD8PLRswH4yMgNnny+MSaYAhb03h2MBdgVncye7glcWGZBb4wZPgEL+naQMN1a4FEBwsttZ/NnZZsgGfOoBmNM0AQv6CMjAPGshJeOnsPIcCc0rPGsBmNMsATsgqk2N+i982rbGSQ0xP3/cR/3HGoBYNddl3takzHG3wLYoy/ztITWZBkbO07mQjsga4wZJsEK+pj3PXqAl9vO5oySdygPH/W6FGNMAAQr6BPe9+jBGacPiXJB2SavSzHGBECwgr73YKy3NnWcTGtiBB8pW+91KcaYAAhY0OfG0E2CMH9qO9Mdp7fpEIwx2RWwoM+NoRuAPx49lymF9cwt3u11KcYYn0sr6EVksYhsF5FaEVnaz/YiEXnM3b5GRKrc9QtEZKP72CQiV2a2/EHKkaEbgOdbFwBw8ajXPK7EGON3Awa9iISB+4FLgfnAtSIyv0+zG4FmVZ0N3Avc7a5/E6hW1bOAxcDPRcS7c/dzZOgGoD4+hg3tc/nEKLtwyhiTXen06BcAtaq6U1WjwDJgSZ82S4BH3OUngEUiIqraoapxd30xXg5IJxOQ6MqZoRuAZ1rP46zSd6Bjv9elGGN8LJ2gnwLsTXld567rt40b7C1ABYCInCciW4DNwJdSgr+XiNwkIjUiUlNfXz/4b5EOd4riXOnRgxP0AOx70ttCjDG+lvWDsaq6RlVPBT4EfFNEjpk6UlUfUNVqVa2urKzMTiHxnqDPnR79O93T2d09EfYt97oUY4yPpRP0+4BpKa+nuuv6beOOwZcDjakNVHUr0AacdqLFDkk893r0IDzbeh4cfK737lfGGJNp6QT9WmCOiMwQkULgGqBvF3Q5cL27fBXwvKqq+54IgIicBMwDdmWk8sFy56LPraB3h2+S3XDwGa9LMcb41IBB746p3wysArYCj6vqFhG5U0SucJs9BFSISC1wK9BzCuZCYJOIbAR+B/ydqjZk+kukJQeHbgBq2udD4Rio+x+vSzHG+FRapzqq6kpgZZ91d6QsdwFX9/O+R4FHh1hjZsRSe/RHPC0lVZwITL4M9j8FyTiEgjVztDEm+4JzZWwOnnXTa9qnobsRDr3gdSXGGB8KTtDn6NANAJMvhchI2L3M60qMMT4UoKDPzYOxAFXffo7fHv4QLW8/Bolur8sxxvhMgII+h3v0wJMtF1IeaYcD/+t1KcYYnwle0IdLva3jOFYfPYvmuA3fGGMyL0BB3wbhYgiFva6kX3EiPN1yAez7H4h3eF2OMcZHAhT0uTMX/fE8eeRCp879K7wuxRjjI8EJ+hy5MfgHWdN+KhRPtOEbY0xGBSfoE7lz05HjSRKG6Z+BfSsgmjsXdRlj8ltwgj7eDuHcDnoAZv61M/fN7v/yuhJjjE8EK+gLcnuMHoAx58DoM2HHQ15XYozxiWAFfT706EVg1t9A0zpo3uR1NcYYHwhW0Of4GH2vqusgVAg7Hva6EmOMDwQo6HP/rJteRRUw9UrY9WubEsEYM2QBCvo86tGDM3wTbbJ56o0xQxaYoI9F2/jp6gNULc2Ti5EmfoK6aCUv/eGu/KnZGJOTgnGXi0SUAknQkTzmvuQ5JzXUb5nwCb46fhnTCw94WJExJt8Fo0fv3nSkMw+CPtV/Ni4mQYjrK57yuhRjTB4LRtC7M1fmQ48+1eF4BSuOLOTqsc9A7KjX5Rhj8lTAgr7I40IG7xcNVzAq3AE7f+l1KcaYPBWwoC/xuJDB29Q5l/Xtc+HtfwVNel2OMSYPBSzo82vopscvGq6Ao+/A/j94XYoxJg8FKug783DoBuDplgs4EK3gpae+Y6daGmMGLVBBn689+jgRHm28nAtHbmB+8U6vyzHG5Jm0gl5EFovIdhGpFZGl/WwvEpHH3O1rRKTKXX+xiKwTkc3u80WZLT9N8TYgf4Me4NeNl9GaKOUr4x/zuhRjTJ4ZMOhFJAzcD1wKzAeuFZH5fZrdCDSr6mzgXuBud30D8BeqejpwPfBopgoflHh+nkefqjVZxi8b/oJLy1+Blre8LscYk0fS6dEvAGpVdaeqRoFlwJI+bZYAj7jLTwCLRERUdYOq7nfXbwFKRGT4B8rz+PTKVL9ouMI5zrDlh16XYozJI+kE/RRgb8rrOnddv21UNQ60ABV92nwaWK+qx0zHKCI3iUiNiNTU19enW3v68vxgbI/mRDmPNl7m3H2q9R2vyzHG5IlhORgrIqfiDOd8sb/tqvqAqlaranVlZWXmC0i005UsdO7JmucearjSmav+rbu8LsUYkyfSCfp9wLSU11Pddf22EZEIUA40uq+nAr8D/lpVdwy14BMSb8/rA7Gp6uNj+MWhi4nteISP3vGg1+UYY/JAOkG/FpgjIjNEpBC4Bljep81ynIOtAFcBz6uqishoYAWwVFX/lKmiB81HQQ/w08OfIZos4B8m/srrUowxeWDAoHfH3G8GVgFbgcdVdYuI3CkiV7jNHgIqRKQWuBXoOQXzZmA2cIeIbHQf4zP+LQbis6Cvj4/hwYYr+eTo1dCwxutyjDE5TlTV6xrep7q6WmtqajK70xcuZeOOHXyq9t7M7tdDI0Id/HHuTVROOQMW/dG5qbgxJrBEZJ2qVve3LTBXxubzOfT9aU+W8uNDfwmHX4J9Nl+9Meb4AhL0bb4auunxWNMlMGoubLwNkjGvyzHG5Khg3Eow3k5ncoLXVWRcnAic9SN4aQls/1eqHpnbu23XXZd7WJkxJpcEpEffnvdXxR5P1X0hnm39EG0132FiQYPX5RhjclCAgt5/QzcO4bv7vkhYktwx6QGvizHG5KBgBH3CfwdjU9XFJvKvhz7LZaNf4WMjM3zGkjEm7/k/6JMxSMZ8O3TT48GGK6ntmsqdk39GiXR5XY4xJof4P+jz+H6xgxHTAr697ytMLzrEbZN+6XU5xpgcEqCg9+/QTY817afzcP0V3DDuKTj4nNflGGNyRICC3t9DNz3uPng9O7qmwmufh2iL1+UYY3JAYILezwdjU3VrEbfu/b/QuR/WfdXrcowxOSAwQR+EoZsemzrnwqnfgnd/Be/+h9flGGM8FoCgz/8bg5+Q0+6A8RfC6zfZPWaNCbgABL0/biM4aKEIXLAMCsrg5U9DrM3riowxHglM0AetR1+1dAVV31vPtVtugaNvw+tfgBybktoYMzz8H/SJYAZ9j1fbz4Azvg+7l8HWH3ldjjHGA/6fvTJgZ930a/434cibsHEplM2C6Vd5XZExZhj5v0cfsPPo+1P1zZXMfepq1rXPg1f/Chpe97okY8wwCkbQh4tJEva6Ek91ayFf2HU7FE+Cl66Aozvet71q6YrehzHGX4IR9JERXleRE5oS5fCxFaBxeH4RdNR5XZIxZhgEI+jDFvS9yk+Bj6+CaDM8/wnoOux1RcaYLAtG0FuPvlfV0hVU/eggV239NrTvgecvge5Gr8syxmSRBX1A1XScChf+Hlq3wbMfozLS7HVJxpgsCUDQt1nQH8+kS+DjT0P7uzw+6xtMLrBhHGP8KK2gF5HFIrJdRGpFZGk/24tE5DF3+xoRqXLXV4jICyLSJiL3Zbb0NFmP/oNN+Dhc9Cxjw638ZtZtzC7a43VFxpgMG/CCKREJA/cDFwN1wFoRWa6qqTNl3Qg0q+psEbkGuBv4LNAF3A6c5j6GX8KC/nhST6WcX/zP/HLGP/Lfs/8BDs6BiZ/wsDJjTCal06NfANSq6k5VjQLLgCV92iwBHnGXnwAWiYioaruqrsYJfG9Yjz4tb3XN5FO1/8K+aCW8cCnU/rvXJRljMiSdoJ8C7E15Xeeu67eNqsaBFqAi3SJE5CYRqRGRmvr6+nTflp54O0TKMrtPn9ofG8/VO34EExc5k6CtvRkSUa/LMsYMUU4cjFXVB1S1WlWrKysrM7tz69EPSluylFmr/o6f1/8feOd+1j98Bh++/RG7YtaYPJZO0O8DpqW8nuqu67eNiESAcsD7k7OTcUhG7YKpQUoQ5p8P/A1f3r2Uk4v3sGLOV7lopM2PY0y+Sifo1wJzRGSGiBQC1wDL+7RZDlzvLl8FPK+aA5OfuxOaWY/+xDzdspAltfdwODaWh2fcCWv/DuIdXpdljBmkAYPeHXO/GVgFbAUeV9UtInKniFzhNnsIqBCRWuBWoPcUTBHZBdwD3CAidSIyP8Pf4fgs6IdsR/c0ltTeywP1V8I7P4M/nAP1r3pdljFmECQXOt6pqqurtaamJjM7a30HnjoZ/uxRqn4+JjP7DLBdtxTDa593JkM7+Stw5g+hYKTXZRljABFZp6rV/W3LiYOxWePeGNx69BkycRFcvgVO/nt4+35YMR/2/MZuUWhMjvN50NvQTcYVjITqn8Alr0BhBaz+DK8+eCaLv3ufnZljTI7y960E3xf0RzwtxQ9Sg3zXXZfD4nWw40HmvnobK+Z8jd82X8T5tx9mf2z8e22MMZ7zd48+YT36rAqFYc6X+Pj2n/NwwxUsGf1HXpj7Rb4z6UHG2WyYxuQMfwd9b4/erozNppbESP7pwN/y8e0P8PsjH+Pz457k5Xl/C+tugY6+l1wYY4ZbgIZuTCb1Nx6/Pzae2+q+xr8dvoovj/8NV267j+TW+/mfIx/jM5+7B0af7kGlxpiA9Ogt6IfTu9EpfKPuFj6+7QEea/pzPjn6ZVh5Bi///Gy+8MPbnSuWjTHDJhg9epsCwRN1sQncsf/L/Muhz/GXY//AX1c8xYNVP4Dlv4RZX4CZN1D1/c297e3grTHZ4f8efajIOWhoPNOSGMnP6q9m4baH+eKub/HSoUrY/I8kf1/FozO+w5LRL1Ai3s1kbYzf+b9Hb8M2OSNBmFWt57Oq9XymFR7k02Oe46oxz/GT6f9CR7II/vQEnHStc4vDcLHX5RrjG/4Oeru7VM7aG53Ijw9dx08OXcuCEVu4YvSLXFfyDOxe5pwlNfkymHolTL4UCsu9LteYvObvoI/ZjcFznRJiTfvprGk/neu+cgkcfB7q/hvqfg97HgeJQOVCmPJJmLQYyueDCNDPBVzGmH75Oug3bd9EW6KE6+zS/PwQKoDJf+48qn8KDa/C/hXOY8PXYcPXORgby+qjZ/NK2xlMLji99ypcY8zx+TfoE92cUvwuDzf0vb2tyVXH9NDHL4TxC6latpDJBYdZWLaRC0duYNGo17lq7HMA7O6eyOvtp8GOgzDuAhg1t7fHb4xx+Dfoj2ymMBTnjc45XldiTkDfC7L2x8bzePMlPN58CUKSecW7+PCIzXy4bDMXjXod1jwLQHN8JGOmLYRx50HFAhh7LhSPP2afNtRjgsS/Qd/kzGn/RocFvd8oIbZ2zWRr10x+0bgEUGYW7aO69C3OLt3GtRV7YfMfAHf65NJpMPYcbplQyludM9naNQM0CeLvs4uN6eHroG+Kj6LOxnADQNjZPZWd3VN5vPkSrv37yyHWCk0boGmd86PfvIGvjt9OSNzw/83XoPw0KD+VH6yGd7pOYkf3VFbfeYP9ABjf8e8dplaeyR/3FHDDru8NfV/GF0qki3klu5hbvIu7LhI4shla34Kuw71tupKFvNs9mXe7J3PZ+R+BkXOgbDaUzYTSKfYjYHLWB91hyp89+ngHtGzhjc6rvK7E5JBOLWZDxzw2dMzjrur3xujP/vZ/MrtoL7OK65hZtI9ZRXXMLdkNW18HTZmXJ1QEI07ixf1l1EXHUxedwG2fvgRGnOQMD5VMhpDzT8qOB5hc4s+gb94ImmCzHYg1aWhOlLO2o5y1Hae9b32YBFMKDzO98CAnFR5getFBphYcYmrhYU4vr2VspBVeeeS9N0gIiidC6VT+7aQwh2JjORSrgJ31zo9AySRne1GF/WVghpU/g949ELvJDsSa40jntocJwuyJTmJPdBKrOfuY7aWhTiYVNDC14DCTCuu5a/EY6NgLHfuYWbSd88veYFS4HV771fveF9cQTfFyxldOh+IJzllBRZXOc3ElFI1zHoUVzo9C4VgIhe2vBHPC/Bn0jTVQMonD8QqvKzE+1pEsYUf3NHZ0TwPgrjPeC99L3FAuli62fess6NwPXYe447FnGR9ppiJyhHGdR6iM7KIisolppW3vzbban4LRvDi3mObESFoTZbD6USgaC4Vj+OGzB2hJlNGaGMHPPr8ICsqhoJzqH73O0UQp3VrIrrs+mdX/Fia3+fNg7FOnwMiTqXr6pswUZcwwKJYuxkZaGRNppSLcwujIUcaEjzIm0kp5uI0x4VbGRI5SHm7jrAkK0WbnoYkP3G80GaGwxAl/IiN5fV+MtkQp7ckS/uLcuRAZCQVlKc89jxHuo4yP3vs6HcliOpPFdCaLSODMCGt/WeSOYB2MjbVC63Y46S+9rsSYQenSYjRK7fQAAAZCSURBVPbHitOb1qG2Z0EpDXVRHm5jVLidkaF25znczshwB6NC7ZSFOygLdTIy3E5ZqJMRYaUy0sxJ4QMc2raFEaFOSkNd75162o8X573/dXcyQleyCH43GsIlECmFcClEStznUmf9+x7F/SwXH/O4+Cdr6NZColrAa9++zFkfKnKmyMjiVc9+HhpLK+hFZDHwEyAM/Luq3tVnexHwK+BcoBH4rKrucrd9E7gRSABfVdVVGau+P03rAYWKaiCZ1Y8yxntCR7KEjmQJB2KVQ9hLkmKJUhbupCTUxYhQZ+8PQEmom9JQl7vcRWmom5JQN8Whbopbuil1l/987ihnxthoCyQ6INHpPOLus6Z3Z7Fn5qa8+O8+G0NFEC563/PbDTGiWkA0GeGcGRPcH4VCnt7aTEwjxJIRPv2hWRAqdB7hwveWex8FXDN2GzEtIKZhvvzPq4lrhJhGiGqEuEaIa5ioFhDXMDGN8NzXL3Z+fEIFvftA3NcSPuZHycsfkgGDXkTCwP3AxUAdsFZElqvqWynNbgSaVXW2iFwD3A18VkTmA9cApwKTgWdF5GTVAf7WHAr3QCxjq4HXs/YxxviJEqJTi+mMD+E+ALs/eHOYBEWhKMUS7X0uDnVTKDGKQjGKJPr+Zfe5SGIUhmLONolSKPHe172PUIxCifPaziYKJUaBxJlRGO9df2jbRgolRkTiFEqcolDsmPrumjrI7/vkB2+OJiPECbs/GGHWnOI8xzUCT5U7M7OGCti4r52YRrhlz9f50/c/P8gi0pNOj34BUKuqOwFEZBmwBEgN+iXAd93lJ4D7RETc9ctUtRt4V0Rq3f29mpnyj/XkC8s5u3Q8C79rIW9MLkkQdv76oMT5+95TSpgkBRKjMBSngLjzIxCKUyBxIrx/uSAUp4AEBSH3tbjbJJGyHKdAEkRS1vc+k3jf9jf3OOvDkqBAyogQJ5HFG/6lE/RTgL0pr+uA847XRlXjItICVLjrX+vz3il9P0BEbgJ6jpy2icj2tKo/vnHwyYYh7iOfjAOC9H0heN/Zvq+/jYMbGuQHNwxlHycdb0NOHIxV1QeABzK1PxGpOd7RZz8K2veF4H1n+77+lu3vm87fCvuAaSmvp7rr+m0jIhGgHOegbDrvNcYYk0XpBP1aYI6IzBCRQpyDq8v7tFkOXO8uXwU8r84J+suBa0SkSERmAHOwI6TGGDOsBhy6ccfcbwZW4Zxe+bCqbhGRO4EaVV0OPAQ86h5sbcL5McBt9zjOgds48JWsnnHznowNA+WJoH1fCN53tu/rb1n9vjl3ZawxxpjMsin0jDHG5yzojTHG53wX9CKyWES2i0itiCz1up5sEpGHReSwiLzpdS3DQUSmicgLIvKWiGwRka95XVM2iUixiLwuIpvc7xuI26WJSFhENojIU17XMhxEZJeIbBaRjSKSgdvr9fMZfhqjd6dreJuU6RqAa/tM1+AbInIh0Ab8SlVPG6h9vhORScAkVV0vIiOBdcCnfPz/V4ARqtomIgXAauBrqvraAG/NayJyK1ANjFJV38+vLCK7gGpVzdoFYn7r0fdO16CqUaBnugZfUtWXcM5yCgRVPaCq693lo8BW+rnS2i/U0ea+LHAf/umZ9UNEpgKXA//udS1+4reg72+6Bt8GQZCJSBVwNrDG20qyyx3G2AgcBp5RVV9/X+DHwDcI1tSzCvyviKxzp4PJOL8FvQkAESkDfgvcoqqtXteTTaqaUNWzcK4qXyAivh2iE5FPAodVdZ3XtQyzhap6DnAp8BV3SDaj/Bb0NuWCz7lj1b8F/kNV+85W7luqegR4AVjsdS1ZdAFwhTtmvQy4SER+7W1J2aeq+9znw8DvcIagM8pvQZ/OdA0mT7kHJx8CtqrqPV7Xk20iUikio93lEpyTDLZ5W1X2qOo3VXWqqlbh/Nt9XlU/53FZWSUiI9wTCxCREcAlQMbPovNV0KtqHOiZrmEr8LiqbvG2quwRkf/Cmdt/rojUiciNXteUZRcAf4XT09voPi7zuqgsmgS8ICJv4HRinlHVQJxyGCATgNUisglnHrAVqvqHTH+Ir06vNMYYcyxf9eiNMcYcy4LeGGN8zoLeGGN8zoLeGGN8zoLeGGN8zoLeGGN8zoLeGGN87v8DWztn8Eyes7EAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "muTarget=1\n", "cv=numpy.array([0.2,0.4])\n", "mu0=numpy.array([1.0,1])\n", "dydx=numpy.array([1.0,4])\n", "fmax=5\n", "nb=100\n", "fx=numpy.linspace(0,fmax,nb+1)\n", "h=propagateErrorLN.generateDistribution(fx,muTarget,mu0,cv,dydx)\n", "y=propagateErrorLN.calculateDistribution(fx,muTarget,mu0,cv,dydx)\n", "print('{} {} {}'.format(numpy.sum(h),numpy.sum(y),numpy.sum(h)/numpy.sum(y)))\n", "matplotlib.pyplot.bar(fx,h,fmax/nb)\n", "matplotlib.pyplot.plot(fx,y,color='orange')\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 4 }