{ "cells": [ { "cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 90, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy\n", "import matplotlib.pyplot\n", "import os\n", "import scipy.interpolate\n", "import convolveLN\n", "import importlib\n", "importlib.reload(convolveLN)\n", "import propagateErrorLN\n", "importlib.reload(propagateErrorLN)\n" ] }, { "cell_type": "code", "execution_count": 98, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.9832360216823045 0.9999999999999999 1.0000000000000002\n" ] }, { "data": { "text/plain": [ "[]" ] }, "execution_count": 98, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABD6ElEQVR4nO3de3zU9Z3v8ddMrhBIuAQSAoGgIohcolxiqBVto8FDq2m7NnLcQlnWbl2h2LS2gaVgT9uNtksXe2BL6epqt6VQ2ko9QLE0LV6WKHcFFUQKhNvkApJJhmSSzMz5YzITRoaQSTL5/Wbm/Xw85jGXfH+/+cxoO2+/t5/F4/F4EBERETExq9EFiIiIiFyPAouIiIiYngKLiIiImJ4Ci4iIiJieAouIiIiYngKLiIiImJ4Ci4iIiJieAouIiIiYXrzRBfQEt9vNuXPn6N+/PxaLxehyREREpBM8Hg/19fVkZWVhtXbchxIVgeXcuXNkZ2cbXYaIiIh0wenTpxkxYkSHbaIisPTv3x/wfuDU1FSDqxEREZHOsNvtZGdn+3/HOxIVgcU3DJSamqrAIiIiEmE6M51Dk25FRETE9BRYRERExPQUWERERMT0FFhERETE9BRYRERExPQUWERERMT0FFhERETE9BRYRERExPQUWERERMT0FFhERETE9BRYRERExPQUWERERMT0FFhERETE9KLias0S+XJKt163zcmnZ/dCJSIiYkbqYRERERHTU2AR05jW9zAv3/QEXxz4J6NLERERk9GQkJhCsqWJH4/8d7ITq/hh358wNOEiq6uLAYvRpYmIiAmoh0VMYVHGRrITq2hw9QHgm5m/ZPmwn2PBbXBlIiJiBgosYry693k0/SUAvn76Gzx19isA/MOQl1mZ/e/E02pkdSIiYgIaEhJjeTyw559JtLaywz6dHfY7APjI1Z9/y17F5wf+lb7WJr56aqnBhYqIiJHUwyLGOvlLqN5JozuJ7579J//Lf7h0D4+eXEazO55ZaRWMSao0sEgRETGaAosYp/kj2P8NAH5S9TBnWjIC/ryzfhq7GiYD8KnUPb1enoiImIcCixjn4FJw1kDaeP6ztihok/L6aQB8qr8Ci4hILFNgEWO0NMDx//Q+nrqGFk9C0GZ/tXsDy5SU9709MiIiEpMUWMQYNf8DnlZIGQUZd1+z2ZmWDD5oGkm8xQ3nXum9+kRExFS6FFjWrFlDTk4OycnJ5OXlsXv37g7bb9q0iXHjxpGcnMzEiRPZtm1bwN8tFkvQ249+9KOulCeRoPqv3vuMe67b9C/2qd4H565/vSEREYlOIQeWjRs3UlJSwooVK9i/fz+TJ0+msLCQ6urqoO137drFnDlzWLBgAQcOHKCoqIiioiIOHz7sb3P+/PmA2/PPP4/FYuELX/hC1z+ZmFvVTu/90Luv2/SvbfNYOP9HcLvCVpKIiJiXxePxeEI5IC8vj2nTprF69WoA3G432dnZLFq0iNLS0qvaFxcX43A42LJli/+1O+64g9zcXNauXRv0PYqKiqivr6e8vLxTNdntdtLS0qirqyM1NTWUjyNGaKmH3w4EjwsePAkpozq8WnM8rewb/whp8Q64dxcMye+9WkVEJGxC+f0OqYelubmZffv2UVBQ0H4Cq5WCggIqKiqCHlNRURHQHqCwsPCa7auqqti6dSsLFiwIpTSJJDVveMNKymjvHJbraCWe1xpu9z45t6XjxiIiEpVCCiy1tbW4XC4yMgL3y8jIyMBmswU9xmazhdT+xRdfpH///nz+85+/Zh1OpxO73R5wkwhS1fn5Kz5/aVstxFnNYxERiUWmWyX0/PPP88gjj5CcnHzNNmVlZaSlpflv2dnZvVihdJtv/koHq4M+7tX6KYAFLr0Nl8+EoyoRETGxkAJLeno6cXFxVFVVBbxeVVVFZmZm0GMyMzM73f7111/n6NGj/OM//mOHdSxZsoS6ujr/7fTp06F8DDFSix0+2ud93IkJtz4XXWkwOM/75Ny2jhuLiEjUCSmwJCYmMmXKlIDJsG63m/LycvLzg0+EzM/Pv2ry7I4dO4K2f+6555gyZQqTJ0/usI6kpCRSU1MDbhIhql8Hjxv63QgpIfaMDf+M917DQiIiMSfkqzWXlJQwb948pk6dyvTp01m1ahUOh4P58+cDMHfuXIYPH05ZWRkAixcvZubMmaxcuZLZs2ezYcMG9u7dy7p16wLOa7fb2bRpEytXruyBjyWmVb0TgF+fupElHawMCmr4bHhnGdj+DK4miLv2sKGIiESXkANLcXExNTU1LF++HJvNRm5uLtu3b/dPrK2srMRqbe+4mTFjBuvXr2fZsmUsXbqUMWPGsHnzZiZMmBBw3g0bNuDxeJgzZ043P5KYWtuE2zcdE0M/dsBk6DMcGs9658FkzerZ2kRExLRC3ofFjLQPS4RovgS/GwweN3nvvUBVa3pIh598eja89aj3GkS3fAtueyY8dYqISK8I2z4sIt3im7/Sf0zIYcVvcNvy5kvv9FxdIiJiegos0nva5q+Esv/KVQZM8t4rsIiIxJSQ57CIhMq37f6WMX9gQh/42l/Sun6ytLa5T43noKkWkrvYUyMiIhFFPSzSK1LjGhif/DcAKhq6MOHWJ6Gfd0k0QN2hHqhMREQigQKL9IrpKe9itXg43jSCmtZB3TuZb1joIw0LiYjECgUW6RWT+nwAwJ7L47t/Ms1jERGJOQos0ituTq4E4Gjj9a/OfF0DFVhERGKNAov0ipuTTwFw1NkDgcXXw1J3GNyu7p9PRERMT4FFwi7J4iQn8TwAx5p6ILD0uwHi+nq352/4sPvnExER01NgkbC7KekMVouHi62p1LQO6P4JLVYY0LbSSMNCIiIxQYFFws43HPRB00jA0jMn9QUWrRQSEYkJCiwSdr4Jtx/0xHCQj1YKiYjEFAUWCbv2HhYFFhER6RoFFgm7sb7A4hzZcyf1DQk5TkJzXc+dV0RETEmBRcKrpZ4RidWAbw5LD0kaBH1HeB/XHe6584qIiCkpsEh41b0HQFXLIC65Unv23BoWEhGJGQosEl517wI93Lvio2sKiYjEDAUWCa9L3uGaHp1w66MeFhGRmKHAIuHl62HpyQm3Pv7Acgg87p4/v4iImIYCi4RXXRh7WFJvBmsitNaD41TPn19ERExDgUXCp/kjaDwHwLFwzGGxJkDaeO9jDQuJiEQ1BRYJn0ve4aAzzUNocPcNz3to4q2ISExQYJHwCedwkI8m3oqIxAQFFgmfcC5p9lFgERGJCQosEj7hXNLs49uiv/4YuJzhex8RETFUvNEFSBTzDQk5eyaw5JRuveq1k2X/C+JToNXhva5Q6tgeeS8RETEX9bBIeDRVg7MWsPBh04jwvY/FAv1u8j6u/zB87yMiIoZSYJHwaBsOot8NNHmSw/te/W/03iuwiIhELQUWCY+2CbcMmBD+9/L1sDQcD/97iYiIIRRYJDza5q+Q1guBpb+GhEREop0Ci4SHr4cl7dbwv1e/tiEh9bCIiEQtBRYJj7r3vfe+rfPDydfD4jgB7tbwv5+IiPQ6BRbpec6L0HzR+9gXJsKp7wiwJoG7BS6fDv/7iYhIr1NgkZ7nG5rpM8y7R0q4WazQb3Tge4uISFRRYJGeV98WGvr1Qu+Kj/ZiERGJal0KLGvWrCEnJ4fk5GTy8vLYvXt3h+03bdrEuHHjSE5OZuLEiWzbtu2qNu+//z4PPPAAaWlppKSkMG3aNCorK7tSnhitoS00+PZH6Q1aKSQiEtVCDiwbN26kpKSEFStWsH//fiZPnkxhYSHV1dVB2+/atYs5c+awYMECDhw4QFFREUVFRRw+fNjf5vjx49x5552MGzeOnTt38s477/Cd73yH5OQwbzgm4eELDb3aw6KVQiIi0czi8Xg8oRyQl5fHtGnTWL16NQBut5vs7GwWLVpEaWnpVe2Li4txOBxs2bLF/9odd9xBbm4ua9euBeDhhx8mISGB//7v/+7Sh7Db7aSlpVFXV0dqamqXziE9aMcnoeYNmPFryHk46DWAetrMfvt48YYV3n1fZh8K+/uJiEj3hfL7HVIPS3NzM/v27aOgoKD9BFYrBQUFVFRUBD2moqIioD1AYWGhv73b7Wbr1q3cfPPNFBYWMnToUPLy8ti8efM163A6ndjt9oCbmIivh6U3Vgi1OdWc6X3QcBxCy+AiIhIBQgostbW1uFwuMjIyAl7PyMjAZrMFPcZms3XYvrq6moaGBp5++mlmzZrFn/70Jz73uc/x+c9/nldffTXoOcvKykhLS/PfsrOzQ/kYEk6tDmhq+3ehF+ewnG0ZSqvHCq5GaDzfa+8rIiK9w/BVQm63G4AHH3yQr3/96+Tm5lJaWspnPvMZ/5DRxy1ZsoS6ujr/7fRp7b1hGr4VQomDIHFgr71tiyeBs81DvU8aNPFWRCTahBRY0tPTiYuLo6qqKuD1qqoqMjMzgx6TmZnZYfv09HTi4+MZPz5wR9RbbrnlmquEkpKSSE1NDbiJSTT0/nCQz6nmYd4H9Zp4KyISbUIKLImJiUyZMoXy8nL/a263m/LycvLz84Mek5+fH9AeYMeOHf72iYmJTJs2jaNHjwa0+eCDDxg1alQo5YkZ+Pdg6cUlzW1OOdsCi3pYRESiTnyoB5SUlDBv3jymTp3K9OnTWbVqFQ6Hg/nz5wMwd+5chg8fTllZGQCLFy9m5syZrFy5ktmzZ7Nhwwb27t3LunXr/Od88sknKS4u5q677uKee+5h+/bt/L//9//YuXNnz3xK6T0G9rCc9PewKLCIiESbkANLcXExNTU1LF++HJvNRm5uLtu3b/dPrK2srMRqbe+4mTFjBuvXr2fZsmUsXbqUMWPGsHnzZiZMmOBv87nPfY61a9dSVlbG1772NcaOHcvvfvc77rzzzh74iNKrjNjltk1lW2B558h+HtjSvpT65NOze70WERHpWSHvw2JG2ofFRP6QA45TcO8bMOQTAL2yDwvAmKRT7Bj7OHZXCpPe3QBYAAUWERGzCts+LCIdcjnB0TZR2pAeFu9E7tQ4BwPjtDePiEg0UWCRnuM4CXi8V2hOHtrrb+/0JHG+eTAAoxKD7wskIiKRSYFFes6V1xCyWAwpwbe0eVTSOUPeX0REwkOBRXqO78KDBqwQ8vEHFvWwiIhElZBXCYlcU1sPy9p98PTW3plo+3G+vVjUwyIiEl3UwyI9py2w+PdDMcDJ5iwAchJ1PSERkWiiwCI9p21IyL/jrAF8V20eqSEhEZGoosAiPcPtAscJ4Ipr+higsi0sDUm4RD/rZcPqEBGRnqXAIj3j8mlwt4A1EVvLYMPKqHenUNuaBsAoDQuJiEQNBRbpGb5rCPW7ATdxhpZS6WwbFkpSYBERiRYKLNIzrtyDxWBa2iwiEn0UWKRn+PdgudHYOoAzzd4LcQ5PqDa4EhER6SkKLNIzTNTDcqbFe1mAEYlVBlciIiI9RYFFeoYvsJigh+VsszewDE+sMbgSERHpKQos0n0eT/uQkAl6WPyBJaEa8BhbjIiI9AgFFum+xvPgagRLHKSMMroazrUMASAlromBcXaDqxERkZ6gwCLd5+td6TsS4hKNrQVwehKpbhkIaFhIRCRaKLBI95lohZDPmbZhoREJmngrIhINFFik+xq8W/LT7wZj67jC2RbfxFstbRYRiQYKLNJ9jpPe+5QcI6sI4NuLZYQCi4hIVFBgke7z9bCkjDa2jiuc9Q8JKbCIiEQDBRbpPl8PS78cI6sIcKZtpZCGhEREokO80QVIZBuzZDNHJ5zBaoGpqz6ktvWC0SUBGhISEYk26mGRbhmWUIvV4qHRnURt6wCjy/HzDQmlxjmguc7gakREpLsUWKRbstuu1+NdRmwxtpgrNHqSudCa6n3iOGVsMSIi0m0KLNIt2Yk2oH3fEzPx9bL459iIiEjEUmCRbvGtwjndnGlwJVfzhyj1sIiIRDwFFukW/5BQiwl7WFrUwyIiEi0UWKRbRrQFltNtq3LM5Kx6WEREooYCi3RL+6Rb8wWWMy1tNamHRUQk4imwSNe1NjI04SPArD0s3s3j1MMiIhL5FFik69qCQIOrD5dc/Q0u5mr+ISFnLbQ6jC1GRES6RYFFuq5tqMXbu2KePVh87O5+2F0p3ifqZRERiWgKLNJ1Du9FD824QshHS5tFRKKDAot0XcNJwJwTbn20eZyISHToUmBZs2YNOTk5JCcnk5eXx+7duztsv2nTJsaNG0dycjITJ05k27ZtAX//8pe/jMViCbjNmjWrK6VJb/L1sJg4sPh7f9TDIiIS0UIOLBs3bqSkpIQVK1awf/9+Jk+eTGFhIdXVwa+Ku2vXLubMmcOCBQs4cOAARUVFFBUVcfjw4YB2s2bN4vz58/7br3/96659Iuk9bT0sZlwh5KMhIRGR6BByYPnxj3/Mo48+yvz58xk/fjxr166lb9++PP/880HbP/vss8yaNYsnn3ySW265he9973vcfvvtrF69OqBdUlISmZmZ/tvAgQO79omk90RAD4t/SKgtXImISGQKKbA0Nzezb98+CgoK2k9gtVJQUEBFRUXQYyoqKgLaAxQWFl7VfufOnQwdOpSxY8fy2GOPceHChWvW4XQ6sdvtATfpZS0N3uXCmPPChz7+zeMuq4dFRCSShRRYamtrcblcZGQE/hd1RkYGNpst6DE2m+267WfNmsUvfvELysvLeeaZZ3j11Ve5//77cblcQc9ZVlZGWlqa/5adnR3Kx5Ce0DaJta41Bbu7n7G1dMC/eVzjeXA1GVuMiIh0WbzRBQA8/PDD/scTJ05k0qRJ3HjjjezcuZNPf/rTV7VfsmQJJSUl/ud2u12hpbf59mBpMd9Vmq/0kSuVy+4k+lqd3P3dX3CyeTgnn55tdFkiIhKikHpY0tPTiYuLo6qqKuD1qqoqMjOD/3BlZmaG1B7ghhtuID09nQ8//DDo35OSkkhNTQ24SS9r8M1fMe9wkJfFP8dmeGKNwbWIiEhXhRRYEhMTmTJlCuXl5f7X3G435eXl5OfnBz0mPz8/oD3Ajh07rtke4MyZM1y4cIFhw4aFUp70poBdbs3NNyzku7K0iIhEnpBXCZWUlPDzn/+cF198kffff5/HHnsMh8PB/PnzAZg7dy5Llizxt1+8eDHbt29n5cqVHDlyhKeeeoq9e/eycOFCABoaGnjyySd58803OXnyJOXl5Tz44IPcdNNNFBYW9tDHlB7XYP4VQj7+HpaE4EvvRUTE/EKew1JcXExNTQ3Lly/HZrORm5vL9u3b/RNrKysrsVrbc9CMGTNYv349y5YtY+nSpYwZM4bNmzczYcIEAOLi4njnnXd48cUXuXTpEllZWdx3331873vfIykpqYc+pvS4SOphads8bkSiAouISKSyeDwej9FFdJfdbictLY26ujrNZ+ktmwZCyyXuPbqGY85RRlfToc+kvcbqUT/krYZbKf7bM5p0KyJiEqH8futaQhK65kvQcglo770wM/WwiIhEPgUWCZ3vQoJJQ7js7mNoKZ3hW8mUkXCBOILv7SMiIuamwCKh821zn5JjZBWdVts6AKc7nniLm4yEa++gLCIi5qXAIiHJKd3K9zZuBWDL35INrqZzPFg53+Jd2pyVoL1YREQikQKLhMy3n4n5N41rd64tsAzXPBYRkYikwCIh8wWWSFjS7HOubfO44ephERGJSAosErIRbRuwRcKmcT6+lUJZ2p5fRCQiKbBIiDztPSwtERRY/D0sGhISEYlECiwSkrS4BvrHNQLtISAS+OawqIdFRCQyKbBISHy9K9UtA3F6IufSCf5Jtwk1EPmbO4uIxBwFFglJdkLkrRCC9t6gfnGN/l16RUQkciiwSEj8S5ojaP4KgNOTRG1rmveJo9LYYkREJGQKLBIS3/V4Iq2HBdqXNiuwiIhEHgUWCUn7pnGR1cMCV1yo0XHK2EJERCRkCiwSEt8eLJG0aZyPv4flsnpYREQijQKLdJ7Hc8WQUAQGlhYNCYmIRCoFFum85oveVTZc8eMfQfzzbjQkJCIScRRYpPMaTgBQ1TIIpyfR4GJC5w9ZGhISEYk4CizSeY6TQGSuEIIr5rA0ngdXs7HFiIhISBRYpPP8gSXy5q8AXHCl0eROBDzQeMbockREJAQKLNJ5DScBONMSmT0sYOGsJt6KiEQkBRbpvLYelkhc0uyjzeNERCKTAot0XoQPCYE2jxMRiVQKLNI5Hk/ET7oFbR4nIhKpFFikc5y10OoA4FzEzmHR5nEiIpFKgUU6p613xdYyiGZPgrG1dMNZX+/QZQ0JiYhEEgUW6ZwomL8CBK4S8niMLUZERDpNgUU6x7ekOYLnrwDYWtK9D1yN4LxgbDEiItJpCizSOVHSw9LsSYA+w7xPNCwkIhIxFFikc3x7sLREdmABoO9I770m3oqIRAwFFumcKOlhASBFgUVEJNIosMj1eTxRM4cFgJRR3nttHiciEjEUWOT6nDXgugxYOO9bZRPJfENC2jxORCRiKLDI9bX1rtAnK6L3YPHTkJCISMTpUmBZs2YNOTk5JCcnk5eXx+7duztsv2nTJsaNG0dycjITJ05k27Zt12z71a9+FYvFwqpVq7pSmoRD2/wV+uUYWUXP8Q0JaZWQiEjECDmwbNy4kZKSElasWMH+/fuZPHkyhYWFVFdXB22/a9cu5syZw4IFCzhw4ABFRUUUFRVx+PDhq9q+9NJLvPnmm2RlZYX+SSR8fIElJcfIKnqOb0ioqRpaG42tRUREOiXkwPLjH/+YRx99lPnz5zN+/HjWrl1L3759ef7554O2f/bZZ5k1axZPPvkkt9xyC9/73ve4/fbbWb16dUC7s2fPsmjRIn71q1+RkBAFww7RxB9YRhtaRo9JHAjxKd7Hl88YW4uIiHRKSIGlubmZffv2UVBQ0H4Cq5WCggIqKiqCHlNRURHQHqCwsDCgvdvt5ktf+hJPPvkkt95663XrcDqd2O32gJuEkW8OS7QMCVksVwwLaR6LiEgkCCmw1NbW4nK5yMgI3IsjIyMDm80W9BibzXbd9s888wzx8fF87Wtf61QdZWVlpKWl+W/Z2dmhfAwJleOE9z5KhoRySrey83QfAL714svklG41uCIREbkew1cJ7du3j2effZYXXngBi8XSqWOWLFlCXV2d/3b69OkwVxnDPJ7om8NC+0UQhycGn3slIiLmElJgSU9PJy4ujqqqqoDXq6qqyMzMDHpMZmZmh+1ff/11qqurGTlyJPHx8cTHx3Pq1Cm+8Y1vkJOTE/ScSUlJpKamBtwkTJqqwdUEWKBv9PRk+XbsHZGgwCIiEglCCiyJiYlMmTKF8vJy/2tut5vy8nLy8/ODHpOfnx/QHmDHjh3+9l/60pd45513OHjwoP+WlZXFk08+ySuvvBLq55EeVvTDXwFwrnkwOf+yw+Bqes7ZFu+OvSPUwyIiEhHiQz2gpKSEefPmMXXqVKZPn86qVatwOBzMnz8fgLlz5zJ8+HDKysoAWLx4MTNnzmTlypXMnj2bDRs2sHfvXtatWwfA4MGDGTx4cMB7JCQkkJmZydixY7v7+aSbshO9c43OtETBlvxX8F1iQENCIiKRIeTAUlxcTE1NDcuXL8dms5Gbm8v27dv9E2srKyuxWts7bmbMmMH69etZtmwZS5cuZcyYMWzevJkJEyb03KeQsMlO9A7nVTqHGVxJz/IFlsyEWuJwGVyNiIhcT8iBBWDhwoUsXLgw6N927tx51WsPPfQQDz30UKfPf/Lkya6UJWEwMsnbw3I6Gq7SfIWa1oE43fEkWVvJTLhgdDkiInIdhq8SEnPLTvAGlsrm4JOqI5UHK+e0UkhEJGIosEiHRia1DQlFWWABONs2LDQioeo6LUVExGgKLHJt7hayEmqA6AwsZ1q8w1zqYRERMT8FFrk2RyVxFjdN7kRqWgcaXU2PO9vsHRLS0mYREfNTYJFra/gb4Jtw27ldiCOJb/O44do8TkTE9BRY5NrariEUjcNBoM3jREQiiQKLXFtbD0vUBpa2SbfDEmrA4za4GhER6YgCi1ybf0goOgOLrWUwrR4rSdZWaAx+tXERETEHBRa5tijvYXERh60l3fvEd0VqERExJQUWuTZfYHFG1y63V/Jt0Y/jlLGFiIhIhxRYJLjmS9D8EdC+X0k0OusPLCcNrUNERDqmwCLBNXhXCNW0DOCyu4/BxYSPP4yph0VExNQUWCS4gD1YoteZts3j1MMiImJuCiwSXJRPuPXx7cWiHhYREXNTYJHgYiSw+Ha7xXEKPB5jixERkWtSYJHg2na5jfYhofMt6bg9FnA1grPG6HJEROQaFFgkuCjfNM6nxZNAVcsg75OGk4bWIiIi16bAIldzu/yTUKN9SAiumMdyWfNYRETMSoFFrtZ4FtwtYE3A1jLY6GrCTpvHiYiYnwKLXK1tOIiUHNzEGVtLL/D3sGhISETEtBRY5Gptm8bR7wZj6+glASuFRETElBRY5Gr+HpbRxtbRS85q8zgREdNTYJGr+QJLjPSwBGwep71YRERMSYFFrhZjgcU/6ba13n/BRxERMRcFFrmaI7YCi9OTBMlaKSQiYmYKLBKo1QFN1d7HMRJYAA5eHADAP639LTmlW40tRkRErqLAIoF8K4QSB0JimrG19CLfsNDwRG3PLyJiRgosEijG5q/4+ANLQrXBlYiISDAKLBIoRgOLb6XQiMQqgysREZFgFFgkUIwGFt/mcSMS1cMiImJGCiwSKEYDy+m2wJKdaAO0F4uIiNkosEighg+99zEaWFLjLjMgrt7gakRE5OMUWKSdu7W9h6X/zcbW0sucniRsLYMAGJV43uBqRETk4xRYpJ3jFLhbIC4Z+o4wupped8o5DICRiTaDKxERkY9TYJF29R947/vdBJbY+1fjdHMmACOTFFhERMymS79Ka9asIScnh+TkZPLy8ti9e3eH7Tdt2sS4ceNITk5m4sSJbNu2LeDvTz31FOPGjSMlJYWBAwdSUFDAW2+91ZXSpDvqj3nvU2NrOMjnVFtg0ZCQiIj5hBxYNm7cSElJCStWrGD//v1MnjyZwsJCqquDLwfdtWsXc+bMYcGCBRw4cICioiKKioo4fPiwv83NN9/M6tWrOXToEG+88QY5OTncd9991NRo19FeZW/rYek/xtg6DFLp62HRkJCIiOlYPB5PSGs48/LymDZtGqtXrwbA7XaTnZ3NokWLKC0tvap9cXExDoeDLVu2+F+74447yM3NZe3atUHfw263k5aWxp///Gc+/elPX7cmX/u6ujpSU1ND+Thypb8Ugu1PkPcc3PgPADF1XZ3b+h7hpZu+ybnmdLK+rLAsIhJuofx+h9TD0tzczL59+ygoKGg/gdVKQUEBFRUVQY+pqKgIaA9QWFh4zfbNzc2sW7eOtLQ0Jk+eHLSN0+nEbrcH3KQH1Md2D4tv0m1mwgVwNRlcjYiIXCk+lMa1tbW4XC4yMjICXs/IyODIkSNBj7HZbEHb22yB3e5btmzh4Ycf5vLlywwbNowdO3aQnp4e9JxlZWV897vfDaV0uR6XE3fDKawWmPqTU9S2xl4IvOhKpcHVh35xjdBwEtLGGV2SiIi0Mc1SkHvuuYeDBw+ya9cuZs2axRe/+MVrzotZsmQJdXV1/tvp06d7udoo1HAcq8VDvasPta0DjK7GIBb/PBYajhtbioiIBAgpsKSnpxMXF0dVVeAF4qqqqsjMzAx6TGZmZqfap6SkcNNNN3HHHXfw3HPPER8fz3PPPRf0nElJSaSmpgbcpJvaVgidcA4HLMbWYqD2wPI3YwsREZEAIQWWxMREpkyZQnl5uf81t9tNeXk5+fn5QY/Jz88PaA+wY8eOa7a/8rxOpzOU8qQ72lYInWzOMrgQY51q9s5jUQ+LiIi5hDSHBaCkpIR58+YxdepUpk+fzqpVq3A4HMyfPx+AuXPnMnz4cMrKygBYvHgxM2fOZOXKlcyePZsNGzawd+9e1q1bB4DD4eAHP/gBDzzwAMOGDaO2tpY1a9Zw9uxZHnrooR78qNKhgB6W2FXpbOthqVdgERExk5ADS3FxMTU1NSxfvhybzUZubi7bt2/3T6ytrKzEam3vuJkxYwbr169n2bJlLF26lDFjxrB582YmTJgAQFxcHEeOHOHFF1+ktraWwYMHM23aNF5//XVuvfXWHvqYcl1tK4ROOGO7h8U/JOTQkJCIiJmEvA+LGWkflh7w0nBoPMeDx1byduNYo6sxzMjE87w27lHv9ZS+6IjJSxSIiPSWsO3DIlGqpQEazwFwojm2h4TONQ+h1WP17sPSqB1vRUTMQoFFoOFDAC60pmJ39TO4GGO1Es+55iHeJ5p4KyJiGgos0r5CKMbnr/hopZCIiPkosIhWCH3Mae3FIiJiOiGvEpLo4buw4coRf+ELg+BEjO/B4nOqWUubRUTMRj0sQk5S24Rb9bAA7RdB1JCQiIh5KLAIo9sCi+aweGlISETEfBRYYlxaXD2D4r1XZj7pm2wa4/ybxzlroKXe2GJERARQYIl5oxO9vSu2lkFcdvcxuBpzqHenQNJg7xP1soiImIICS4zT/JVr6Hej917zWERETEGBJcaNTjoL6BpCV/EFFq0UEhExBQWWGDdaPSzB9bvBe68hIRERU1BgiXGjE709LCe1B0sgDQmJiJiKAktM8/jnsPxNPSyB1MMiImIqCiwxbEj8JfrHNeLyWNv3HhGv/m09LI5T4G41thYREVFgiWU3JJ0B4GzzEJo9CQZXYzJ9ssCaBJ5WuFxpdDUiIjFPgSWGjUn2/hB/4BxpcCUmZLFCv9Hex1opJCJiOAWWGDY26RQAx5pGGVyJSfW/2XtvP2psHSIiosASy2729bA0qYclqLRbvPf2I8bWISIiCiwxy+NpHxJSD0twqeO89wosIiKGU2CJVU1VDIq34/JY+dA5wuhqzEmBRUTENBRYYlXduwCcas7E6UkyuBiTSh3rvW88Cy12Y2sREYlxCiyx6tJhAI5p/sq1JQ6E5AzvY028FRExlAJLrGrrYTmq+SsdS9XEWxERM4g3ugAxSJ16WDqSU7oVgO8P78PfD0aBRUTEYOphiUUej3pYOul4U9uE5Lr3jS1ERCTGKbDEorZJpC2eOE4066KHHTnuW0GlHhYREUMpsMSitgm3J51ZtOgaQh360JntfdDwIbhbjC1GRCSGKbDEIg0Hddr5lnQuu5O8YaXhhNHliIjELAWWWKQJt53mwcrfNCwkImI4BZZYdEk9LKHwT7y1a+KtiIhRFFhijcftHxI65lQPS2d8qB4WERHDKbDEGscpcF0GayInnVlGVxMRjvsm3tYpsIiIGEWBJda09a6QOg4XccbWEiECljZ7PMYWIyISo7oUWNasWUNOTg7Jycnk5eWxe/fuDttv2rSJcePGkZyczMSJE9m2bZv/by0tLXz7299m4sSJpKSkkJWVxdy5czl37lxXSpPraVvSTNoEY+uIIN6eKAu0XIKmKqPLERGJSSEHlo0bN1JSUsKKFSvYv38/kydPprCwkOrq6qDtd+3axZw5c1iwYAEHDhygqKiIoqIiDh/2/nBevnyZ/fv3853vfIf9+/fz+9//nqNHj/LAAw9075NJcL4elgG3GltHBHF6EqHfaO8TzWMRETGExeMJrY87Ly+PadOmsXr1agDcbjfZ2dksWrSI0tLSq9oXFxfjcDjYsmWL/7U77riD3Nxc1q5dG/Q99uzZw/Tp0zl16hQjR15/YqjdbictLY26ujpSU1ND+Tix54+3wUcH4a7N5KzWpaQ66+Ssn8K5rTDtpzDmq0aXIyISFUL5/Q6ph6W5uZl9+/ZRUFDQfgKrlYKCAioqKoIeU1FREdAeoLCw8JrtAerq6rBYLAwYMCCU8uR63K72a+JoSCg0qeO89+phERExREiBpba2FpfLRUZGRsDrGRkZ2Gy2oMfYbLaQ2jc1NfHtb3+bOXPmXDNtOZ1O7HZ7wE06oeE4uJ0Q16d9iEM65dt/bgbgtb2vkVO61X81ZxER6R2mWiXU0tLCF7/4RTweDz/96U+v2a6srIy0tDT/LTs7uxerjGC++Stp48Fiqn/0pufbPO6GpDMGVyIiEptC+tVKT08nLi6OqqrAlRJVVVVkZmYGPSYzM7NT7X1h5dSpU+zYsaPDsawlS5ZQV1fnv50+fTqUjxG7/IFFE25D5bsI4ojEGvpYmgyuRkQk9oQUWBITE5kyZQrl5eX+19xuN+Xl5eTn5wc9Jj8/P6A9wI4dOwLa+8LKsWPH+POf/8zgwYM7rCMpKYnU1NSAm3Qsp3QrW177EwBlu6wa0gjRJVcqF1q9/57dkHTW4GpERGJPyOMCJSUl/PznP+fFF1/k/fff57HHHsPhcDB//nwA5s6dy5IlS/ztFy9ezPbt21m5ciVHjhzhqaeeYu/evSxcuBDwhpW/+7u/Y+/evfzqV7/C5XJhs9mw2Ww0Nzf30McUgAl9PgTg3cYbDa4kMvk2kLsxWT16IiK9LeR1rcXFxdTU1LB8+XJsNhu5ubls377dP7G2srISq7U9B82YMYP169ezbNkyli5dypgxY9i8eTMTJnhXqZw9e5aXX34ZgNzc3ID3+utf/8rdd9/dxY8mV0qNayAn6TwA7zSOMbiayHS8aQTTU97jRs1jERHpdV3aiGPhwoX+HpKP27lz51WvPfTQQzz00ENB2+fk5BDiVjDSBRPbeldOOodhd/UzuJrI5JvHosAiItL7tFQkRkzu8wEAhxpvMriSyPVhk3cTw3HJJ40tREQkBimwxIiJfb09LG9f1nBQV73XdAPgnXSrlUIiIr1LgSVGTOpzDIBDmr/SZTWtA6luGYjV4uGWPieMLkdEJKYosMSCxiqGJ9bg9lg4rBVC3fJuo7eXZXyfvxlciYhIbFFgiQUX9wHeZbkOd1+Di4lsviXhtyYfN7gSEZHYosASCy7uAeAdTbjttnfb5rHcqh4WEZFepcASCy7sBeCQJtx2m6+HZWzySXC3GFuMiEgMUWCJdh4PXPQGFm0Y132nmzOwu/qSZG2FuveNLkdEJGYosES7xrPQZKPVY+W9xtFGVxPxPFh5v23iLR8dMLYYEZEYosAS7dqGg441jaTJk2xwMdHhXQUWEZFep8AS7dom3L7deLPBhUSPd5valoYrsIiI9BoFlmjnn3CrFUI9pb2H5SB43IbWIiISKxRYotkVE27Vw9JzPmzKxulOgBY7NGh5s4hIb1BgiWaOE9B8EayJfNA0yuhqokYr8Rxt+z7/efVz5JRuJad0q8FViYhENwWWaNY2HMSASTR7EoytJcr4hoVu7aMdb0VEeoMCSzRrm3DL4GnG1hGFfBNvb03WkJCISG9QYIlmvh6WQVONrSMKvaceFhGRXqXAEq08bv9FDxVYet77jaNxeywMSbjEkPiLRpcjIhL1FFiilf0ItNZDXB9IG290NVGn0ZPM35zDAfWyiIj0BgWWaFX1V+99+gywxhtbS5TyXQhRV24WEQk/BZZo5QssGfcYW0cUe7epbR5LsnpYRETCTYElGnncVwSWTxlbSxRTD4uISO9RYIlGlw55N4yLT4HBmnAbLr69WEYl2ehvdRhcjYhIdFNgiUa+3pUhnwSrNowLl0uuVM40DwFgYt9jBlcjIhLdFFiiUdVfvPcaDgq7fQ7vCqzpKe8aXImISHRTYIk2bhdUv+Z9rAm3YfeWYwIAeSmHDa5ERCS6KbBEm48OQEsdJKTBwNuMribq+QLLbX2PgstpcDUiItFLgSXa+IaDhs4Ea5yxtcSA484R1LamkWxthgt7jC5HRCRqKbBEG+2/0sss7G641fuw5jVjSxERiWIKLNHE3QI1r3sfK7D0mrccE70Pql41thARkSimwBJNLuyBVgckDYYBE42uJmbsdrT1sNT+D7hbjS1GRCRKKbBEE99w0NC7waJ/tL3lSFMOda0p3rB4cb/R5YiIRCX9qkUTzV8xhAcruy9rHouISDjpMr7RwuX0DkkAZHyKnNKtxtYTY95qmMC9qbu981hu+abR5YiIRB31sESL2jfB1QTJmZA6zuhqYs7utv1YqHndu3mfiIj0qC4FljVr1pCTk0NycjJ5eXns3r27w/abNm1i3LhxJCcnM3HiRLZt2xbw99///vfcd999DB48GIvFwsGDB7tSVmzzb8d/D1gsxtYSg95tvBHi+3k37as7ZHQ5IiJRJ+TAsnHjRkpKSlixYgX79+9n8uTJFBYWUl1dHbT9rl27mDNnDgsWLODAgQMUFRVRVFTE4cPtW5k7HA7uvPNOnnnmma5/klh39mXvfWaBsXXEKBdxMOQT3ifVmsciItLTLB6PxxPKAXl5eUybNo3Vq1cD4Ha7yc7OZtGiRZSWll7Vvri4GIfDwZYtW/yv3XHHHeTm5rJ27dqAtidPnmT06NEcOHCA3NzcTtdkt9tJS0ujrq6O1NTUUD5OVJi5/Oe8Ou4rtHqsTH3vl1xyxd53YAb/POQ3fGvYL/hj3QweO7UUgJNPzza4KhER8wrl9zukHpbm5mb27dtHQUH7f8VbrVYKCgqoqKgIekxFRUVAe4DCwsJrtu8Mp9OJ3W4PuMWy+9N2AbCrYbLCioF81xWannIYCOm/A0RE5DpCCiy1tbW4XC4yMjICXs/IyMBmswU9xmazhdS+M8rKykhLS/PfsrOzu3yuaHB/mnd10B/rPmFwJbHtncYxNLkTGRxv56ak00aXIyISVSJyldCSJUuoq6vz306fjuEfh4aTTO57DJfHyp/q7jC6mpjW4klg/2XvCq28lMPXaS0iIqEIKbCkp6cTFxdHVVVVwOtVVVVkZmYGPSYzMzOk9p2RlJREampqwC1mnf4d4B2OuOAaYGwtwlsN3mGh/H7vGFyJiEh0CSmwJCYmMmXKFMrLy/2vud1uysvLyc/PD3pMfn5+QHuAHTt2XLO9hKjytwBs03CQKbzWcDsAd/ffR5Kl2eBqRESiR8g73ZaUlDBv3jymTp3K9OnTWbVqFQ6Hg/nz5wMwd+5chg8fTllZGQCLFy9m5syZrFy5ktmzZ7Nhwwb27t3LunXr/Oe8ePEilZWVnDt3DoCjR48C3t6Z7vTERD3HabjwJm6PhVfqFADN4ODlmznfPJhhiRe4s98B4HNGlyQiEhVCnsNSXFzMv/3bv7F8+XJyc3M5ePAg27dv90+srays5Pz58/72M2bMYP369axbt47Jkyfz29/+ls2bNzNhwgR/m5dffpnbbruN2bO9S0AffvhhbrvttquWPcvHnP49AHsc46lpHWRwMQLe6wptt88A2ldviYhI94W8D4sZxew+LDs+CTVv8NTZr/DChQeMrkba5KUcYuONS7jU2o8Bf38RrAlGlyQiYkph24dFTOTyOajxLmf2/Re9mMMex3hqWgYwIL6h/QraIiLSLQoskerMS4AH0vOxtaQbXY1cwU0cO+xtS8zbVnGJiEj3KLBEqspN3vvsvzO2Dgnqj3VtvV5nNuvqzSIiPUCBJQLN+M5/4a7yXmDvE+sHGlyNBFPRMIlLrf2gqRpq3jC6HBGRiKfAEoHmDt6K1eJhV8MkzrYMNbocCaKVeP5sz/M+0bCQiEi3KbBEmlYHDw96BYDnax80uBjpiH9Y6PTvweM2thgRkQinwBJpTvySAfENnHJm8hf7VKOrkQ680XAbxPeDxrNwYbfR5YiIRDQFlkji8cDRZwF48cJncRNncEHSEacnkZdrvVv1/+xXPyKndKvBFYmIRC4Flkhi2wH296l39eE3F+81uhrpBN+w0P2p/wNE/B6NIiKGUWCJJG29K7/9qIAGd1+Di5HO2GmfSqM7iZFJVUzt+57R5YiIRCwFlkhh/wDObQMsvFD7WaOrkU5q9CTzh0szAVgw5A8GVyMiErkUWCLF0Z9477Nmc6o5y9haJCTP1XhXcxWmVkD9cYOrERGJTAoskaD5Epx4wft43BMGFiJdccw5ip32KVgtHji6yuhyREQikgJLJDi2FlodkDYBMj5ldDXSBT+v/Zz3wfHnofkjY4sREYlACixm13ge3v2B9/Et3wSLxdh6pEv+p2Ey7zfmgOsyHPuZ0eWIiEQcBRazO1gKrQ0weDqM/pLR1UiXWfhPXy/LB/8XXM3GliMiEmEUWMysZhec+AUAD75ZTM6SP2rzsQj28qW7oM8waDwHlRuNLkdEJKIosJiV2wV7FwGw8eK9vN041uCCpLtaPAlw80LvkyM/9u5cLCIinaLAYlZ/ew4+2o/dlcIPz88zuhrpKTd9FeL6wkcHoeqvRlcjIhIxFFjMyHkR3l4KwL/b/jcXXAOMrUd6TtIguOHL3scHS709aSIicl0KLGb0znJwXoC0W/nvC7ONrkZ62q3/AgmpcHEPfLDa6GpERCKCAovZnPkDHFvjfTz1/9JKvLH1SI/KKd1Kzv85wJITcwFw7CmFhpPGFiUiEgEUWMzk0mHY9ffex2Meh4x7jK1HwmbDxft4q2ECKXFNvPqrL5BTusUbZrQKTEQkKAUWs3BegFcfgNYGdjVM4qbf3asfryjmwcqSswtxuhOY2X8/Dw7YaXRJIiKmpsBiBu4WeOOL4DhBpTODfz5VqqGgGPA35wierZoDwIqsnzMors7gikREzEuBxQz2fwOq/gLxKTx66jtccqUaXZH0knU1n+f9xhwGxdtZnrUO0N4sIiLBKLAYyeOBQ9/zbtUOkP9LjjblGFqS9K5W4ik9swiXx0rRwFd5fOhvjC5JRMSUFFiM4mqGtxbAoeXe55P/FbKLDC1JjPF241j+9fw/APBk5n/DkWcNrkhExHw0UcIIzZfg9S94h4EsVpi6GsY8ZnRVYqDnaovoH+fgiYxfw/4nIKE/3PgPRpclImIaCiy9zXEKdv4vqHsPhyuZxyu/zc63RwJaERTrVlX9b1KsjTw6ZDO89Y8QnwKjio0uS0TEFDQk1FvcrTz1o3/C/vtboe49bC2DeOj4D9lZP83oysQ0LPzg/ALWX5gFeGh54xG+9cxickq3GF2YiIjh1MPSG6rfgL2P89TwdwA4eHkMXz31L9ha0g0uTMzHwrKzj9HH2sTnBu7kh9k/4d7Ut6BxGvTJMLo4ERHDKLCESU7pVm5KquSxoZv4wkDvVXkvtfbjR7a5/PpiIW7iDK5QzMpNHN84/XWONOVQkvFL7k17C7ZNhOk/g+zPGV2eiIghLB6PJ+I3frDb7aSlpVFXV0dqqsF7mLiccPol3vrTD8jrdxgAt8fChov38SPbXD5ypRlbn0SUcckn+PfsldzS56T3hZFfhPHfgkFTDK1LRKQnhPL7rcDSE1oa+Icf/oi7+u/nMwNeJz3eu2Opy2Plz/bp/Ef1Q7zdOLb365KokGhp4YmMX/FPQ35PnMXtfXHInTD2CRjxIFjVUSoikSmU3+8uTbpds2YNOTk5JCcnk5eXx+7duztsv2nTJsaNG0dycjITJ05k27ZtAX/3eDwsX76cYcOG0adPHwoKCjh27FhXSgs/jwcun4Wz2+Dw9+HP98DvBvH86P/Dl9O3kB5fh61lEKuq5vCJI8/zT6eWKaxItzR7Evih7cs8cOzfeemju2nxxEHNG/DG33HmF1m88JPP8o//uhxa7EaXKiISNiH3sGzcuJG5c+eydu1a8vLyWLVqFZs2beLo0aMMHTr0qva7du3irrvuoqysjM985jOsX7+eZ555hv379zNhwgQAnnnmGcrKynjxxRcZPXo03/nOdzh06BDvvfceycnJ162pV3pY3v4XqK2Aj96G5otX/bnSmcFrDbfzV/tUXq2fomsBSdgMjb/A3w/exiOD/8jg+CtCiiUOBufBkBmQeov3lnYLJA4wrFYRkY6EdUgoLy+PadOmsXr1agDcbjfZ2dksWrSI0tLSq9oXFxfjcDjYsqV9aeYdd9xBbm4ua9euxePxkJWVxTe+8Q2++c1vAlBXV0dGRgYvvPACDz/8cI9+4K7IKd3K5pu+Tm5fb69Pq8fKcecIjjSOZs/l8bxWfzuVzcN6/H1FOpJkcXJ3/318ot/b3Nn/ADcknbtGwyHQJwv6ZEJyBiRnQuJASEj1blCXkArx/cCaBHHJEJfkfWxNAEu8d8jJkgDWOMAKFkvbvRWwtD23fOwx7fcWS5Cigr3WS4LWIyJGCOX3O6RugObmZvbt28eSJUv8r1mtVgoKCqioqAh6TEVFBSUlJQGvFRYWsnnzZgBOnDiBzWajoKDA//e0tDTy8vKoqKgIGlicTidOp9P/3G4Pf1f4f9Z8jj5WJ+81jebDppE4PYlhf0+Rjjg9Sbxin8Er9hkADE+oZka/g4zvc4Ibk85wU9JpshJrwVnjvV162+CKo83Hgk+nglAnwttV5+ngGIvl+m2CnvcaxwU9XyfaXPVasLB6rb8FaXPd81k62TbIY3+w7sR5gh7XmfN8LMhfs4YgbTvTzvcfCwHnDfb36xx/zRqu/LsVUm+Gmx/HaCEFltraWlwuFxkZgftBZGRkcOTIkaDH2Gy2oO1tNpv/777XrtXm48rKyvjud78bSundcvLp2cDsXns/kR7TUg8Nx6HRBk1V0GTzPm655P1bi917a23wrnBzO8HV5L13t4DHBZ5W8LiN/iQm9LHO6Z5avxDxyyAk6mR8OvICi1ksWbIkoNfGbreTnZ1tYEUiJpXQHwbmwsBunsfjbgsvHsDd/hzPFT/UHvy/tgGvffxc4fpF7sp5O3FMp+oN1qYzgeZa5/7499jRMR19x6H8cwj2np4O/na9NkHO01Fdwf7mCfa4gzbXPN+V73+dYz3daO9v47nG42ucp8NjrnOuK/8W0MZ9nXO4OzjW97/ztuf9bsAMQgos6enpxMXFUVVVFfB6VVUVmZmZQY/JzMzssL3vvqqqimHDhgW0yc3NDXrOpKQkkpKSQildRLrD4puzIiJijJD+HygxMZEpU6ZQXl7uf83tdlNeXk5+fn7QY/Lz8wPaA+zYscPffvTo0WRmZga0sdvtvPXWW9c8p4iIiMSWkIeESkpKmDdvHlOnTmX69OmsWrUKh8PB/PnzAZg7dy7Dhw+nrKwMgMWLFzNz5kxWrlzJ7Nmz2bBhA3v37mXdunUAWCwWnnjiCb7//e8zZswY/7LmrKwsioqKeu6TioiISMQKObAUFxdTU1PD8uXLsdls5Obmsn37dv+k2crKSqzW9o6bGTNmsH79epYtW8bSpUsZM2YMmzdv9u/BAvCtb30Lh8PBV77yFS5dusSdd97J9u3bO7UHi4iIiEQ/bc0vIiIihgj71vwiIiIivUmBRURERExPgUVERERMT4FFRERETE+BRURERExPgUVERERMT4FFRERETE+BRURERExPgUVERERML+St+c3It1mv3W43uBIRERHpLN/vdmc23Y+KwFJfXw9Adna2wZWIiIhIqOrr60lLS+uwTVRcS8jtdnPu3Dn69++PxWIJy3vY7Xays7M5ffq0rlcURvqew0/fcfjpOw4/fce9I9zfs8fjob6+nqysrIALJwcTFT0sVquVESNG9Mp7paam6n8cvUDfc/jpOw4/fcfhp++4d4Tze75ez4qPJt2KiIiI6SmwiIiIiOkpsHRSUlISK1asICkpyehSopq+5/DTdxx++o7DT99x7zDT9xwVk25FREQkuqmHRURERExPgUVERERMT4FFRERETE+BRURERExPgaWT1qxZQ05ODsnJyeTl5bF7926jS4oqr732Gp/97GfJysrCYrGwefNmo0uKKmVlZUybNo3+/fszdOhQioqKOHr0qNFlRZ2f/vSnTJo0yb/JVn5+Pn/84x+NLiuqPf3001gsFp544gmjS4kaTz31FBaLJeA2btw4o8tSYOmMjRs3UlJSwooVK9i/fz+TJ0+msLCQ6upqo0uLGg6Hg8mTJ7NmzRqjS4lKr776Ko8//jhvvvkmO3bsoKWlhfvuuw+Hw2F0aVFlxIgRPP300+zbt4+9e/fyqU99igcffJB3333X6NKi0p49e/jZz37GpEmTjC4l6tx6662cP3/ef3vjjTeMLknLmjsjLy+PadOmsXr1asB77aLs7GwWLVpEaWmpwdVFH4vFwksvvURRUZHRpUStmpoahg4dyquvvspdd91ldDlRbdCgQfzoRz9iwYIFRpcSVRoaGrj99tv5j//4D77//e+Tm5vLqlWrjC4rKjz11FNs3ryZgwcPGl1KAPWwXEdzczP79u2joKDA/5rVaqWgoICKigoDKxPpurq6OsD7Yyrh4XK52LBhAw6Hg/z8fKPLiTqPP/44s2fPDvj/Zuk5x44dIysrixtuuIFHHnmEyspKo0uKjosfhlNtbS0ul4uMjIyA1zMyMjhy5IhBVYl0ndvt5oknnuATn/gEEyZMMLqcqHPo0CHy8/NpamqiX79+vPTSS4wfP97osqLKhg0b2L9/P3v27DG6lKiUl5fHCy+8wNixYzl//jzf/e53+eQnP8nhw4fp37+/YXUpsIjEmMcff5zDhw+bYkw6Go0dO5aDBw9SV1fHb3/7W+bNm8err76q0NJDTp8+zeLFi9mxYwfJyclGlxOV7r//fv/jSZMmkZeXx6hRo/jNb35j6NCmAst1pKenExcXR1VVVcDrVVVVZGZmGlSVSNcsXLiQLVu28NprrzFixAijy4lKiYmJ3HTTTQBMmTKFPXv28Oyzz/Kzn/3M4Mqiw759+6iurub222/3v+ZyuXjttddYvXo1TqeTuLg4AyuMPgMGDODmm2/mww8/NLQOzWG5jsTERKZMmUJ5ebn/NbfbTXl5ucalJWJ4PB4WLlzISy+9xF/+8hdGjx5tdEkxw+1243Q6jS4janz605/m0KFDHDx40H+bOnUqjzzyCAcPHlRYCYOGhgaOHz/OsGHDDK1DPSydUFJSwrx585g6dSrTp09n1apVOBwO5s+fb3RpUaOhoSEgvZ84cYKDBw8yaNAgRo4caWBl0eHxxx9n/fr1/OEPf6B///7YbDYA0tLS6NOnj8HVRY8lS5Zw//33M3LkSOrr61m/fj07d+7klVdeMbq0qNG/f/+r5l6lpKQwePBgzcnqId/85jf57Gc/y6hRozh37hwrVqwgLi6OOXPmGFqXAksnFBcXU1NTw/Lly7HZbOTm5rJ9+/arJuJK1+3du5d77rnH/7ykpASAefPm8cILLxhUVfT46U9/CsDdd98d8Pp//dd/8eUvf7n3C4pS1dXVzJ07l/Pnz5OWlsakSZN45ZVXuPfee40uTaTTzpw5w5w5c7hw4QJDhgzhzjvv5M0332TIkCGG1qV9WERERMT0NIdFRERETE+BRURERExPgUVERERMT4FFRERETE+BRURERExPgUVERERMT4FFRERETE+BRURERExPgUVERERMT4FFRERETE+BRURERExPgUVERERM7/8D11b90KZo9z0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "muTarget=1\n", "cv=numpy.array([0.2,0.4])\n", "mu0=numpy.array([1.0,1.0])\n", "dydx=numpy.array([1.0,-0.5])\n", "fmax=5\n", "nb=100\n", "fx=numpy.linspace(0,fmax,nb+1)\n", "h=propagateErrorLN.generateDistribution(fx,muTarget,mu0,cv,dydx)\n", "y=propagateErrorLN.calculateDistribution(fx,muTarget,mu0,cv,dydx)\n", "print('{} {} {}'.format(numpy.sum(fx*y)/numpy.sum(y),numpy.sum(y),numpy.sum(h)/numpy.sum(y)))\n", "matplotlib.pyplot.bar(fx,h,fmax/nb)\n", "matplotlib.pyplot.plot(fx,y,color='orange')\n" ] }, { "cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.29356038 0.29356038]\n", "[2.43987137e-01+0.00000000e+00j 2.45110495e-01-2.44527012e-02j\n", " 2.43590371e-01-4.91260136e-02j ... 7.57700368e-27-5.41816969e-27j\n", " 7.50087710e-27-5.40592089e-27j 7.42537332e-27-5.39348347e-27j]\n", "[2.63090977e+00-0.00000000e+00j 2.60495558e+00+1.89292222e-01j\n", " 2.56550644e+00+3.74802156e-01j ... 2.68359363e-44+1.71020205e-44j\n", " 2.59169038e-44+1.72201602e-44j 2.50163352e-44+1.73184640e-44j]\n" ] } ], "source": [ "n=2000\n", "qz,fa,u0,h=convolveLN.getZArray(n)\n", "cv=numpy.array([0.3,0.3])\n", "mu=numpy.array([1.5,1])\n", "sigma=numpy.sqrt(numpy.log(1+cv*cv))\n", "muS=numpy.log(mu/numpy.sqrt(1+cv*cv))\n", "print(sigma)\n", "#q1=convolveLN.getComplexConjugatedLTransformAtMinusComplexConjugatedZGrid(0.3,qz)\n", "q1=convolveLN.getLTransformGrid(sigma[0],qz,muS[0])\n", "q2=convolveLN.getComplexConjugatedLTransformAtMinusComplexConjugatedZGrid(0.1,qz,muS[1])\n", "q3=convolveLN.getLTransformGrid(sigma[1],qz,muS[1])\n", "fmax=5\n", "nb=100\n", "fx=numpy.linspace(0,fmax,nb+1)\n", "print(q1)\n", "print(q2)\n", "fy=convolveLN.inverseL(fx,qz,q1*q3,fa,u0,h,n)" ] }, { "cell_type": "code", "execution_count": 81, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "61.91493950447091" ] }, "execution_count": 81, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCEklEQVR4nO3deXTT55k2/usryZK8SPK+G2xjs4MNDgGzkxAIWRomTUozbUnIMmkKaVLaX6Z0ZrJ0en60b9606TQkJM0ktJOh2SEtTSHsBDBhMU5YDcaAjbG8W7JlW/v7hyyBEwyWLenRcn3O0QHLknXbB9sX3+d+7kdyOp1OEBEREQkiE10AERERRTaGESIiIhKKYYSIiIiEYhghIiIioRhGiIiISCiGESIiIhKKYYSIiIiEYhghIiIioRSiCxgIh8OBy5cvQ6PRQJIk0eUQERHRADidTnR0dCAzMxMyWf/XP0IijFy+fBk5OTmiyyAiIqJBqK2tRXZ2dr/vD4kwotFoALg+Ga1WK7gaIiIiGgij0YicnBzP7/H+hEQYcS/NaLVahhEiIqIQc6MWCzawEhERkVAMI0RERCQUwwgREREJ5VUYWb16NaZMmQKNRoPU1FQsXrwYlZWV133OunXrIElSn5tarR5S0URERBQ+vAoju3fvxvLly3HgwAFs3boVVqsVCxYsgMlkuu7ztFot6uvrPbeLFy8OqWgiIiIKH17tptm8eXOft9etW4fU1FQcOXIEs2fP7vd5kiQhPT19cBUSERFRWBtSz4jBYAAAJCYmXvdxnZ2dGD58OHJycnDPPffgxIkTQ3lZIiIiCiODDiMOhwNPP/00ZsyYgfHjx/f7uFGjRuGtt97CJ598gnfeeQcOhwPTp0/HpUuX+n2O2WyG0WjscyMiIqLwJDmdTudgnvjEE0/gH//4B/bu3XvdEa9fZ7VaMWbMGDzwwAP4z//8z2s+5vnnn8cLL7zwjfsNBgOHnhEREYUIo9EInU53w9/fg7oysmLFCmzatAk7d+70KogAQFRUFCZNmoSqqqp+H7Nq1SoYDAbPrba2djBlEhERUQjwqoHV6XTiySefxIYNG7Br1y7k5eV5/YJ2ux3Hjh3DHXfc0e9jVCoVVCqV1x+biIiIQo9XYWT58uVYv349PvnkE2g0Guj1egCATqdDdHQ0AGDp0qXIysrC6tWrAQC//OUvMW3aNBQUFKC9vR0vvvgiLl68iEcffdTHnwoRERGFIq/CyGuvvQYAmDt3bp/73377bTz00EMAgJqaGshkV1Z/2tra8Nhjj0Gv1yMhIQElJSXYv38/xo4dO7TKiUiYVpMFfzlYA6fTicz4aGTGRyMrPhrpOjWi5BzsTETeGXQDayANtAGGiPxvywk9/m3DMTR3Wr7xvsRYJV5eUozZI1MEVEZEwcavDaxEFHnauyx4+t2jePx/jqC504LC1DjcV5KN6SOSkJccC6VChlaTBcvWHcI7BzhlmYgGzqtlGiKKTHvPNuMn71egqcMMmQQ8PmcEnrq1EOoouecxZpsdqz4+ho/L6/DvG4/jfLMJv7hjDOQySWDlRBQKGEaI6LpqW7vwL/9zGF0WO/JTYvHS/UWYNCzhG49TKeR46f4i5CfH4v9+dgb/vfc8LrZ04fffLUasij9qiKh/XKYhon45HE488+FX6LLYMSU3AZ/+eNY1g4ibJElYcUsh/vDAJCgVMmw71YAn/rccIdCaRkQCMYwQUb/e+eIiyqpbEB0lx4v3FfVZlrmeu4sy8ZfHpkGlkGHPmSa8f5iDC4mofwwjRHRNNS1dWP3paQDAv94+CrnJsV49v2R4An66YCQA4FebTqHe0O3zGokoPDCMENE3OBxO/OzDL9FttWNqXiKWluYO6uM8MjMfxTnx6DDb8IuPj3G5hoiuiWGEiL7hT2UXcPB8K2KUruUZ2SB3xMhlEl68byKUchl2Vjbh4/I6H1dKROGAYYSI+qhp6cJvNruWZ1YtGo1hSTFD+niFaRo8Nb8QAPDC306g0dgz5BqJKLwwjBBRH298fg49Vgem5Sfie1OH++RjPj47HxOydDD22PBvG49zuYaI+mAYISIPQ7cVHx1xLaX8+NbCQS/PfJ1CLsOL909ElFzC1pMN2H2myScfl4jCA8MIEXm8f6gW3VY7RqVpUJqf5NOPPTpdiwd7G2HX7Kzy6ccmotDGMEJEAAC7w4k/lV0AACybkQtJ8v0Y98dm50Mpl+HQhTYcPN/q849PRKGJYYSIAADbTzXgUls34mOicE9xll9eI02rxn03ZQPg1REiuoJhhIgAAG/vuwAA+O6UYYhWDmzS6mD8cPYIyGUSdp9pwvE6g99eh4hCB8MIEeG03oiy6hbIZRJ+UOqbHTT9GZYUg28VZQIAXt3FqyNExDBCRADW9V4VWTguDVnx0X5/vSfmjgAA/OO4HlWNnX5/PSIKbgwjRBGuzWTBhqOu7bwPTc8LyGuOTNNgwdg0OJ3Aa7vOBeQ1iSh4MYwQRbh3D9XCbHNgXKYWU3ITAva6P5pXAADYWFGH2taugL0uEQUfhhGiCOZ0OrH+4EUAwEPT/bOdtz/FOfGYWZAMu8OJP35eHbDXJaLgwzBCFMFOXDaitrUb0VFy3DUxM+Cv/8M5rt6Rj8vr0GWxBfz1iSg4MIwQRbDNx/UAgLmjUvy6nbc/00ckYVhiDDrNNnx6TB/w1yei4MAwQhTBNp9wBYDbx6cLeX2ZTMJ3eoegvX+oVkgNRCQewwhRhKpq7EBVYyei5BLmjU4VVsd9JTmQScDBC62obuI2X6JIxDBCFKG2nGgAAMwoSIZWHSWsjnSdGnNGpgAA3j98SVgdRCQOwwhRhHL3i9w+TswSzdWWTMkBAHxUfgk2u0NwNUQUaAwjRBHoUlsXjtUZIJOA+WPTRJeDW0anISlWiaYOM3ZVNokuh4gCjGGEKAK5l2im5CYiOU4luBpAqZDh3smuk4LfO8xGVqJIwzBCFIE2H68HIG4XzbV85ybXUs2O041o7OgRXA0RBRLDCFGEaezoweGLbQCAhUHQL+JWmKbBpGHxsDuc+Li8TnQ5RBRADCNEEWbryQY4nUBRtg6ZATih1xtLeq+OvH+oFk6nU3A1RBQoDCNEEca9i2ZhEC3RuN1VlIkYpRzVzSaU17SJLoeIAoRhhCiCGLqsKDvXAiA4tvR+XZxK4Vk62vRVveBqiChQGEaIIsjOykbYHE6MTItDfkqc6HKu6c4JGQCAT4/Vw+HgUg1RJGAYIYoge6uaAQDzRokb/34js0YmQ6NSoMFoxhEu1RBFBIYRogjhdDo9SzTTC5IFV9M/lUKO23oHsf2dSzVEEYFhhChC1LR2oa69G1FyCVNyE0SXc113TuRSDVEkYRghihD7e6+KTMpJQIxSIbia65tZmAyNWoHGDrNnJgoRhS+GEaII4Q4jpSOSBFdyY1cv1Xx6jEs1ROGOYYQoArj6RVzNq9NDIIwAwF1XLdXYuVRDFNYYRogiwNnGTjR3WqCOkqF4WLzocgZkZkHKlaWaC62iyyEiP2IYIYoA+3u39E7JTYRKIRdczcAoFTIsGOsagMalGqLwxjBCFAH2ubf0jgjeLb3X4lmqOa7nUg1RGGMYIQpzdocTB6rdYSQ0+kXcZhQkQ6tWoKnDjENcqiEKWwwjRGHuxGUDOnps0KgVGJepFV2OV5QKGRb0nlXDAWhE4YthhCjMubf0Ts1LgkIeet/y7rNqPjuph9PJpRqicBR6P5mIyCvuMDKjILSWaNxKRyQhRilHg9GM43VG0eUQkR8wjBCFMYvNgUPnXb0Woda86qaOkmN2YQoAYOupBsHVEJE/MIwQhbEvL7Wj22pHUqwSI9PiRJczaLeOcZ0yvO0kwwhROGIYIQpj+6uujICXJElwNYN3y+hUSBJwst6Iy+3dosshIh9jGCEKY/s8I+BDc4nGLSlOhZJhrpOGt3OphijsMIwQhSmLzYGK2nYAwLT8RLHF+MCtY1wH52071Si4EiLyNYYRojB1st4Ii82BxFgl8pJjRZczZLeNdfWNlJ1rQafZJrgaIvIlhhGiMFV+sQ0AMCknPqT7RdxGpMRheFIMLHYHPj/TJLocIvIhhhGiMHW0d4lmUoic0nsjkiRhPpdqiMISwwhRmHJfGZnc2/gZDtxhZGdlIw/OIwojDCNEYajR2IO69m7IJGBiTrzocnzmptwEaNUKtJosOFrTJrocIvIRhhGiMFRe0w4AGJmmQZxKIbYYH4qSyzBvtKuRldNYicKHV2Fk9erVmDJlCjQaDVJTU7F48WJUVlbe8HkffPABRo8eDbVajQkTJuDTTz8ddMFEdGNHa3ubV8NoicbN0zfCaaxEYcOrMLJ7924sX74cBw4cwNatW2G1WrFgwQKYTKZ+n7N//3488MADeOSRR3D06FEsXrwYixcvxvHjx4dcPBFd29GL7QCAyWHSvHq1OaNSoJBJONdkwvnm/n/2EFHokJxDOJO7qakJqamp2L17N2bPnn3NxyxZsgQmkwmbNm3y3Ddt2jQUFxdj7dq1A3odo9EInU4Hg8EArVY72HKJIoLV7sCE57egx+rAtpVzUJAaumfS9Oef/3gA+8+14Nm7xuLhmXmiyyGifgz09/eQekYMBgMAIDGx/+mOZWVlmD9/fp/7Fi5ciLKysn6fYzabYTQa+9yIaGBO13egx+qALjoK+WEw7Oxa5o5yneK7m/NGiMLCoMOIw+HA008/jRkzZmD8+PH9Pk6v1yMtLa3PfWlpadDr9f0+Z/Xq1dDpdJ5bTk7OYMskijjufpHinHjIZKE/7Oxa5o5yNbEeqG5Bj9UuuBoiGqpBh5Hly5fj+PHjePfdd31ZDwBg1apVMBgMnlttba3PX4MoXIXjfJGvK0yNQ4ZODbPNgbLqFtHlENEQDSqMrFixAps2bcLOnTuRnZ193cemp6ejoaFv13tDQwPS09P7fY5KpYJWq+1zI6KBCbfJq9ciSdKVpZpKLtUQhTqvwojT6cSKFSuwYcMG7NixA3l5N24cKy0txfbt2/vct3XrVpSWlnpXKRHdUHOnGRdbuiBJQHEYhxEAmDPStVTDvhGi0OdVGFm+fDneeecdrF+/HhqNBnq9Hnq9Ht3d3Z7HLF26FKtWrfK8/dRTT2Hz5s146aWXcPr0aTz//PM4fPgwVqxY4bvPgogAABW9w84KUuKgVUeJLcbPZhQkQSGTcL7ZhIst3OJLFMq8CiOvvfYaDAYD5s6di4yMDM/tvffe8zympqYG9fX1nrenT5+O9evX44033kBRURE+/PBDbNy48bpNr0Q0OOU14d8v4qZRR6FkuOvz5NURotDm1ZzogYwk2bVr1zfuu//++3H//fd781JENAhHe6+MhHO/yNXmjkrFF+dbsauyCUtLc0WXQ0SDxLNpiMKEze7Al5faAYTnGPhrcTex7j/XzC2+RCGMYYQoTJxp6ESXxQ6NSoHCMJy6ei2j0zVI06rQY3Xg4PlW0eUQ0SAxjBCFCfews6IwHnb2dZIkYc5ITmMlCnUMI0Rh4nid63iGidk6wZUElnsa667KRsGVENFgMYwQhYnjda4znMZnRVYYmVGQDHnvKb61rV2iyyGiQWAYIQoDFpsDlfoOAMCECAsjuugoTO7dPcSlGqLQxDBCFAbONHTAYned1JudEC26nIC7slTDMEIUihhGiMKAu19kfJYWkhQZzatXczexlp1rhtXuEFwNEXmLYYQoDBy/3BtGMiNricZtbIYWibFKmCx2z+A3IgodDCNEYeBYhDavuslkEmYWJAMAPj/LpRqiUMMwQhTirHYHTtVHdhgBgFmFrjCy52yz4EqIyFsMI0QhrqqxExabAxqVAsMTY0SXI8ysQlffyFeX2tHeZRFcDRF5g2GEKMS5m1fHZmojZvLqtaTr1BiZFgenE9hX1SK6HCLyAsMIUYhzh5FImy9yLTMLXFdH2DdCFFoYRohC3PHL7BdxmzXS3cTaDKfTKbgaIhoohhGiEGZ3OHGSYcRjal4ilHIZ6tq7cb7ZJLocIhoghhGiEFbd1Iluqx0xSjnykmNFlyNcjFKBm3ITALiujhBRaGAYIQphx3r7RcZlaiGP4ObVq7l31bBvhCh0MIwQhTD3Sb3jInTy6rW4542UnWuBxcbR8EShgGGEKIRxJ803jc3QIskzGr5NdDlENAAMI0QhyuFw4oT7TBqGEQ+ZTMLMwiu7aogo+DGMEIWo8y0mmCx2qKNkGJHC5tWrsW+EKLQwjBCFKPcSzZgMLRRyfitfzX1o3ld1BrSZOBqeKNjxJxhRiGK/SP/6jIY/x6UaomDHMEIUotw7acZzJ801uUfD76tiGCEKdgwjRCHI6bzSvDouSyu4muDk3uK7l2GEKOgxjBCFoLr2bhh7bIiSSyhM1YguJyjdnJeIKLmE2tZuXGzhaHiiYMYwQhSCTtV3AABGpMRBqeC38bXEqhSYNIyj4YlCAX+KEYWg0/WufpGxGVyiuR73rhr2jRAFN4YRohB0Su8KI6MzuERzPe7hZ/vPtcDucAquhoj6wzBCFILcyzRjeGXkuiZm6aBRK2Dotnq2QhNR8GEYIQoxXRYbLvQ2ZDKMXJ9CLkNpfhIA7qohCmYMI0QhplLfAacTSNGokBynEl1O0JvlOaeGo+GJghXDCFGIcS/RjE5nv8hAzOhtYi2/2I4ui01wNUR0LQwjRCHmFHfSeCUvORZZ8dGw2B04eL5VdDlEdA0MI0Qhxh1G2C8yMJIkcYsvUZBjGCEKIQ6HE6f13EnjrRmevhGGEaJgxDBCFELq2rvRabZBKZchPyVWdDkhY8YI146a0/oONHWYBVdDRF/HMEIUQk72LtEUpMYhSs5v34FKilN5emz2n+PVEaJgw59mRCGE/SKDN4tLNURBi2GEKIRcCSPc1ust92j4fVXNcDo5Gp4omDCMEIUQd/Mqt/V6b0puIpQKGeoNPTjXZBJdDhFdhWGEKER0mm242NIFABjNMOI1dZQcU3ITAHCLL1GwYRghChGVvSf1pmlVSIxVCq4mNLmnsbJvhCi4MIwQhYiTPKl3yGYVpAAADlS3wGZ3CK6GiNwYRohCBHfSDN3YTC3iY6LQabbhy0vtosshol4MI0Qh4nRvGOEBeYMnl0mYMYJLNUTBhmGEKARcPQaeO2mGZgbPqSEKOgwjRCGgprULXRY7lAoZ8pI5Bn4o3MPPjta0o9NsE1wNEQEMI0Qhwd0vMipNAwXHwA9JTmIMhifFwOZw4ovqFtHlEBEYRohCgnuJhv0ivsEtvkTBhWGEKARU9oaRUQwjPjGLfSNEQYVhhCgEVDa4r4ywedUXSkckQZKAs42d0Bt6RJdDFPEYRoiCXLfFjgstrrNUeGXEN+JjlJiYpQMA7OXVESLhGEaIgtzZxg44nUBirBLJcRwD7yvc4ksUPBhGiIKcp18kTQNJkgRXEz5m9m7x3VvVDKfTKbgaosjGMEIU5Ni86h8lwxOgjpKhqcPs6ckhIjG8DiN79uzB3XffjczMTEiShI0bN1738bt27YIkSd+46fX6wdZMFFGuNK8yjPiSSiHHzXlJAIC93OJLJJTXYcRkMqGoqAhr1qzx6nmVlZWor6/33FJTU719aaKIdJpXRvxmFueNEAUFhbdPWLRoERYtWuT1C6WmpiI+Pt7r5xFFslaTBU0dZgDAyDSGEV+bNTIZ+BT44nwLzDY7VAq56JKIIlLAekaKi4uRkZGB2267Dfv27bvuY81mM4xGY58bUSRy94vkJEYjVuX1/x3oBkalaZCiUaHH6sCRC22iyyGKWH4PIxkZGVi7di0++ugjfPTRR8jJycHcuXNRXl7e73NWr14NnU7nueXk5Pi7TKKgVKl3n0nDYWf+IEnSlaUabvElEsbvYWTUqFF4/PHHUVJSgunTp+Ott97C9OnT8bvf/a7f56xatQoGg8Fzq62t9XeZREGJzav+597i+/nZJsGVEEUuIdd9b775Zuzdu7ff96tUKqhUqgBWRBSc2LzqfzN7r4ycuGxES6cZSXH82UMUaELmjFRUVCAjI0PESxOFDIfDiTM8rdfvUrVqjE7XwOkE9p1rEV0OUUTy+spIZ2cnqqqqPG+fP38eFRUVSExMxLBhw7Bq1SrU1dXhz3/+MwDg5ZdfRl5eHsaNG4eenh68+eab2LFjBz777DPffRZEYaiuvRsmix1Rcgm5ybGiywlrMwuScVrfgb1nm/CtokzR5RBFHK/DyOHDhzFv3jzP2ytXrgQAPPjgg1i3bh3q6+tRU1Pjeb/FYsFPf/pT1NXVISYmBhMnTsS2bdv6fAwi+ib3TpoRKXGIknNYsj/NGpmCN/eex96zrtHwHLtPFFheh5G5c+de9xyHdevW9Xn7mWeewTPPPON1YUSRjs2rgXNzbiKUchkuG3pwrsmEgtQ40SURRRT+d4soSF1pXuW2Xn+LVsoxJS8BALCXu2qIAo5hhChIuWeM8MpIYMwsSAHA0fBEIjCMEAUhi82B6iYTAGAkw0hAzOqdN3KgugUWm0NwNUSRhWGEKAhVN3fC5nBCo1YgU6cWXU5EGJuhRVKsEiaLHUdrOBqeKJAYRoiCkHsnzag0DXd2BIhMJmF67wC0vRwNTxRQDCNEQYiTV8VwL9XsYd8IUUAxjBAFoUpOXhVidqGrifWrS+1oM1kEV0MUORhGiIJQJbf1CpGuU2NkWhycTi7VEAUSwwhRkOnosaKuvRuAq2eEAmvOSNfVkd1nOG+EKFAYRoiCzJmGTgBAulYNXUyU4Goiz+yR7nkjTdedNk1EvsMwQhRkzvSOged8ETGm5CZCHSVDg9HsGclPRP7FMEIUZK5s6+X5KCKoo+SYlp8EANjDpRqigGAYIQoybF4Vz72rhn0jRIHBMEIUZNzLNGxeFcfdN3LofBu6LDbB1RCFP4YRoiDS3GlGi8kCSQKPsRdoREossuKjYbE78EV1q+hyiMIewwhREHEv0eQmxSJaKRdcTeSSJMlzdYRLNUT+xzBCFETcYWQkm1eFmzOydzQ8wwiR3zGMEAUR9osEj+kFyZDLJFQ3m1Db2iW6HKKwxjBCFETcB+Rxxoh4WnUUJg+LBwDsOcurI0T+xDBCFCQcDifONvCAvGDi2eJbyTBC5E8MI0RBoq69GyaLHUq5DMOTYkWXQ7iyxXf/uRZY7Q7B1RCFL4YRoiDhbl7NT4lFlJzfmsFgQpYOibFKdJptKL/YJrocorDFn3hEQaKSSzRBRyaTMKvQtauGW3yJ/IdhhChI8IC84DRvVCoAYCf7Roj8hmGEKEhcOSCPYSSYzB6ZAkkCTtUboTf0iC6HKCwxjBAFAavdgXNNnQCAUbwyElQSY5UozokHAOyqbBRbDFGYYhghCgIXmk2w2p2IVcqRFR8tuhz6GvdSzY7TDCNE/sAwQhQEKq/qF5EkSXA19HXuMLKvqhlmm11wNUThh2GEKAi4+0W4kyY4jcvUIjlOBZPFjsMXuMWXyNcYRoiCwJUD8hhGgpFMJmHuKNcAtJ1cqiHyOYYRoiDAA/KC35UtvgwjRL7GMEIkWJfFhou9p8JyxkjwmlnoOsX3XJMJNS08xZfIlxhGiASrauyE0wkkxymRHKcSXQ71QxcdhZLhCQCAXWd4dYTIlxhGiARjv0jo8CzVsG+EyKcYRogEYxgJHfNGXznFt8fKLb5EvsIwQiTY6d4wMiaDYSTYjUrTIEOnhtnmQFl1i+hyiMIGwwiRYO4wMipdK7gSuhFJkjC3d6lmF5dqiHyGYYRIoJZOM5o7zZAkYGRanOhyaADm9c4b2X66EU6nU3A1ROGBYYRIIHe/yLDEGMQoFYKroYGYWZgMpUKGS23dONPQKbocorDAMEIkkGeJhs2rISNGqcCMEUkAgG2nGgRXQxQeGEaIBPKcSZPBfpFQMn9sGgCGESJfYRghEui03giAB+SFmltHu8JIRW07mjrMgqshCn0MI0SCOBxOT8/BKIaRkJKuU2NClg5OJwegEfkCwwiRIDWtXei22qFSyJCbFCu6HPLS/DGuqyNbuVRDNGQMI0SCuJtXC9PiIJdJgqshb80f65o38vnZJk5jJRoihhEiQSo9O2nYvBqKxmZokalTo8fqwP5zzaLLIQppDCNEglQ2uJpXOQY+NEmShFvdSzUn2TdCNBQMI0SCnK53j4FnGAlV7i2+2081wOHgNFaiwWIYIRKgx2rHhRYTAIaRUDYtPxGxSjkaO8w4ftkguhyikMUwQiTA2YZOOJxAYqwSKXEq0eXQIKkUcswe6TqrZttJ7qohGiyGESIB3MPORqVpIEncSRPK3Ft8t51i3wjRYDGMEAlwZQw8l2hC3bzRqZBJwMl6I+rau0WXQxSSGEaIBKhs6A0j7BcJeYmxSpQMTwAAbD2hF1wNUWhiGCES4JRnJw1njISDhePSAQBbTrBvhGgwGEaIAqyl04zmTjMkCRiZFie6HPIBdxj54nwLWjp5cB6RtxhGiALM3S8yLDEGMUqF4GrIF3ISYzA+SwuHE9jGs2qIvMYwQhRg7jNp2C8SXm7vvTqy+Tj7Roi85XUY2bNnD+6++25kZmZCkiRs3Ljxhs/ZtWsXJk+eDJVKhYKCAqxbt24QpRKFB8+ZNOwXCSu3j3eFkX1VLTD2WAVXQxRavA4jJpMJRUVFWLNmzYAef/78edx5552YN28eKioq8PTTT+PRRx/Fli1bvC6WKByc5k6asFSQqsGIlFhY7A7sPM2ZI0Te8HrBetGiRVi0aNGAH7927Vrk5eXhpZdeAgCMGTMGe/fuxe9+9zssXLjQ25cnCml2hxNn9DyTJlzdPj4da3aew5YTetxTnCW6HKKQ4feekbKyMsyfP7/PfQsXLkRZWZm/X5oo6FxsMaHbaoc6SobcpFjR5ZCPLRqfAQDYeboJ3Ra74GqIQoffw4her0daWlqf+9LS0mA0GtHdfe1phWazGUajsc+NKBycrHf9Wx6droVcxjHw4WZcphZZ8dHottqx52yT6HKIQkZQ7qZZvXo1dDqd55aTkyO6JCKfONUbRsZksHk1HEmS5Glk3cJdNUQD5vcwkp6ejoaGvvvuGxoaoNVqER0dfc3nrFq1CgaDwXOrra31d5lEAXHysiuMjM1kGAlX7jCy7VQDLDaH4GqIQoPfw0hpaSm2b9/e576tW7eitLS03+eoVCpotdo+N6Jw4B4DP5YH5IWtycMSkByngrHHhgPVLaLLIQoJXoeRzs5OVFRUoKKiAoBr625FRQVqamoAuK5qLF261PP4H/7wh6iursYzzzyD06dP49VXX8X777+Pn/zkJ775DIhCRKvJAr2xBwBnjIQzuUzCwnGuPrnNPDiPaEC8DiOHDx/GpEmTMGnSJADAypUrMWnSJDz77LMAgPr6ek8wAYC8vDz8/e9/x9atW1FUVISXXnoJb775Jrf1UsRx94vkJsUgTsUx8OHs6r4Rm51LNUQ34vVPxLlz58LpdPb7/mtNV507dy6OHj3q7UsRhRU2r0aOaflJSIiJQovJggPVrZhZmCy6JKKgFpS7aYjCkad5lWEk7EXJZVg0wTVz5G9fXhZcDVHwYxghCpCTvDISUe6emAnA1TfCXTVE18cwQhQAZpsdVY2dALitN1LcnJeIFI0Khm4r9lZxABrR9TCMEAVAVWMnbA4ndNFRyNCpRZdDASCXSbizd6lm05f1gqshCm4MI0QBcHW/iCRxDHykuLvItVTz2ckG9Fh5Vg1RfxhGiALAPeyM/SKRZfKweGTFR6PTbMOuykbR5RAFLYYRogA4WW8AwH6RSCNJEu6a2Lur5isu1RD1h2GEyM+cTudVV0Y4Bj7SuJdqtp9qgMlsE1wNUXBiGCHys8uGHhi6rVDIJBSkxokuhwJsXKYWuUkx6LE6sO1Uw42fQBSBGEaI/OxUb/NqQWocVAq54Goo0CRJ8lwd2cSlGqJrYhgh8jP3sDNOXo1cd/UOQNtd2QRDt1VwNUTBh2GEyM/cZ9KweTVyjUrXYGRaHCx2B7bwJF+ib2AYIfIzHpBHAHBPcRYA4OPyS4IrIQo+DCNEftRptuFCSxcAhpFIt3hSFiQJOFDdikttXaLLIQoqDCNEflSpd10VSdeqkRirFFwNiZQVH43S/CQAwMajdYKrIQouDCNEfuQZA89+EQJw7+RsAMDH5XVwOp2CqyEKHgwjRH50rK538iqXaAjA7ePTER0lR3WzCUdr20WXQxQ0GEaI/OhYnevKyIRsneBKKBjEqRS4fXw6ADayEl2NYYTIT3qsdpxtcI2Bn5DFMEIu3+5dqvnbl/Uw23iSLxHAMELkN6fqjbA5nEiOUyJDpxZdDgWJ0hFJSNeqYei2YscpnuRLBDCMEPnN8d5+kfFZOkiSJLgaChZymYTFk1wzRz4q564aIoBhhMhvvrrkCiMTuURDX3PvZFcY2VXZiJZOs+BqiMRjGCHyk2NXXRkhutrINA0mZOlgczjxty8viy6HSDiGESI/6LHacbaxEwB30tC1ua+OfMhdNUQMI0T+cLLeCLvDieQ4FdK1bF6lb/pWUSai5BKO1xk9/UVEkYphhMgP3L9cJmRp2bxK15QUp8LCca6ZI385WCO4GiKxGEaI/MDdvMr5InQ9/3zzMADAJxWX0WWxCa6GSByGESI/8FwZyY4XWwgFtWn5SchNikGn2YZNX9aLLodIGIYRIh/rtthxhpNXaQBkMgnf7b06sp5LNRTBGEaIfOxkvREOJ5CiUSFNqxJdDgW5+0qyESWXUFHb7jnlmSjSMIwQ+diV5lVOXqUbS45TYcFYVyPru4d4dYQiE8MIkY+5m1c57IwG6oHepZoNR+vQbeHheRR5GEaIfMx9ZYRj4Gmgpo9IwrDEGHT02PD3Y2xkpcjDMELkQ10WG8429javcvIqDZCrkTUHAGeOUGRiGCHyoVN9mlc5eZUG7r6SbChkEo5cbEOlvkN0OUQBxTBC5EM8qZcGK1Wjxm1j0wAAfy67ILYYogBjGCHyIZ7US0OxtDQXAPBxeR0MXVaxxRAFEMMIkQ95mlfZL0KDMC0/EaPTNei22rnNlyIKwwiRj3T0WFHV2AmAk1dpcCRJwsMz8gAAfy67CJvdIbgiosBgGCHykS9rDXA4gaz4aKSyeZUG6VvFmUiMVaKuvRvbTjWILocoIBhGiHykvKYNAFAyPEFwJRTK1FFyz2m+b+27ILYYogBhGCHyEXcYmTwsXmwhFPK+P204FDIJB8+34sRlg+hyiPyOYYTIBxwOJ8ov9oYRXhmhIUrXqbFoQgYA4G1eHaEIwDBC5APVzZ0w9tigjpJhTIZWdDkUBpbNyAUA/LXiMpo7zWKLIfIzhhEiHzjSe1VkYnY8ouT8tqKhmzwsAUU58bDYHVj/Bbf5UnjjT00iHyi/2A6AzavkWw/3Xh35c9lF9Fh5mi+FL4YRIh+40rzKMEK+s2h8BjJ1ajR3mvHhkUuiyyHyG4YRoiEydFlxtnfYGXfSkC8pFTI8NjsfAPD6nnMcgkZhi2GEaIiO1rquiuQmxSApTiW4Ggo3350yDImxStS2duPvx+pFl0PkFwwjREPELb3kT9FKuad35NWd5+BwOMUWROQHDCNEQ1Re0w6A/SLkPz8ozUWcSoHKhg7sON0ouhwin2MYIRoCu8OJitp2ANxJQ/6ji47C96cNBwC8uqsKTievjlB4YRghGoIzDR3oNNsQp1JgZJpGdDkUxh6emQulQobymnZ8cb5VdDlEPsUwQjQE7i29RTk6yGWS4GoonKVq1PjOTdkAgDU7qwRXQ+RbDCNEQ+CevFrCfhEKgMdnj4BcJuHzs804dokH6FH4YBghGoKjvc2rk9gvQgGQkxiDe4oyAQC/23ZGcDVEvsMwQjRIrSYLzjebAACTcxhGKDB+fGsh5DIJO0434vAF9o5QeGAYIRok93yRgtQ46GKiBFdDkSI3OdbTO/LilkrurKGwMKgwsmbNGuTm5kKtVmPq1Kk4ePBgv49dt24dJEnqc1Or1YMumChYHLro+l8pR8BToD15SyGUChm+ON+KvVXNosshGjKvw8h7772HlStX4rnnnkN5eTmKioqwcOFCNDb2P4hHq9Wivr7ec7t48eKQiiYKBmXnWgAApSOSBFdCkSYzPhrfn+qaO8KrIxQOvA4jv/3tb/HYY49h2bJlGDt2LNauXYuYmBi89dZb/T5HkiSkp6d7bmlpaUMqmkg0Q5cVx+pcuxmmj0gWXA1Foh/NG4EYpRxfXTLgs5MNosshGhKvwojFYsGRI0cwf/78Kx9AJsP8+fNRVlbW7/M6OzsxfPhw5OTk4J577sGJEyeu+zpmsxlGo7HPjSiYHDjfAqcTGJESizQtlx0p8JLjVHh4Rh4A4KXPKmHnmTUUwrwKI83NzbDb7d+4spGWlga9Xn/N54waNQpvvfUWPvnkE7zzzjtwOByYPn06Ll261O/rrF69GjqdznPLycnxpkwiv3Mv0cwo4FUREuex2fnQqhU409CJv315WXQ5RIPm9900paWlWLp0KYqLizFnzhx8/PHHSElJweuvv97vc1atWgWDweC51dbW+rtMIq/s620anM5+ERJIFx2Fx+eMAAC8tLUSZptdcEVEg+NVGElOToZcLkdDQ9/1yYaGBqSnpw/oY0RFRWHSpEmoqup/nLFKpYJWq+1zIwoWjR09ONvYCUkCpuUzjJBYy2bkIlWjQm1rN97ae0F0OUSD4lUYUSqVKCkpwfbt2z33ORwObN++HaWlpQP6GHa7HceOHUNGRoZ3lRIFCfcSzbhMLeJjlIKroUgXo1TgX28fDQB4ZcdZNHb0CK6IyHteL9OsXLkSf/zjH/GnP/0Jp06dwhNPPAGTyYRly5YBAJYuXYpVq1Z5Hv/LX/4Sn332Gaqrq1FeXo7vf//7uHjxIh599FHffRZEAbS/yhVGuIuGgsU/TcpCUU48TBY7XtxcKbocIq8pvH3CkiVL0NTUhGeffRZ6vR7FxcXYvHmzp6m1pqYGMtmVjNPW1obHHnsMer0eCQkJKCkpwf79+zF27FjffRZEAbS/2tUvwvkiFCxkMgnP3jUW335tPz4sv4QflA7HxOx40WURDZjkDIFpOUajETqdDgaDgf0jJFRtaxdm/Z+dUMgkfPncAsSqvM7zRH7zk/cqsOFoHW4anoAPflgKSZJEl0QRbqC/v3k2DZEX9p9zXRUpzolnEKGg86+3j0Z0lByHL7bhb1/Viy6HaMAYRoi8sP+cu1+ESzQUfNJ1avxormur7+pPT6Hbwq2+FBoYRogGyOl0XgkjHHZGQeqx2fnIio9GvaEHf9hxVnQ5RAPCMEI0QFWNnWjqMEOlkGEST+qlIKWOkuPZu10bBN7YU42Tl3mcBgU/hhGiAXJPXZ2SmwiVQi64GqL+LRyXjtvHpcPmcOLnH3/Fc2so6DGMEA3QlSUa9otQ8HvhnnHQqBX46pIBb+87L7ocoutiGCEaAJvdgQPVHHZGoSNNq8Yv7hgDAHjpszOobe0SXBFR/xhGiAbg0IU2GHtsSIiJwvhMzrqh0LDkphxMzUtEt9WOf9t4HCEwVooiFMMI0QB8dlIPALh1TBoUcn7bUGiQySSsvncClAoZ9pxpwsaKOtElEV0Tf6oS3YDT6cTWk66Tqm8bmya4GiLv5KfE4albCwEAL/ztJPQGHqRHwYdhhOgGTus7cKmtGyqFDLMK2S9CoedfZudjfJYW7V1W/PSDCji4u4aCDMMI0Q18dsJ1VWRWYQpilBwBT6EnSi7D7787CdFRcuyrasGbe6tFl0TUB8MI0Q1sPeXqF1nAJRoKYSNS4jzD0F7cUonjdQbBFRFdwTBCdB117d04XmeETAJuHZMquhyiIfnulBwsHJcGq92JH797FF0Wm+iSiAAwjBBd17bextWS4QlIilMJroZoaCRJwq/vnYg0rQrVTSb856ZToksiAsAwQnRd3EVD4SYhVonffqcYAPCXgzX49Fi92IKIwDBC1C9Dt9UzdfW2semCqyHynRkFyXh8Tj4A4GcffIkzDR2CK6JIxzBC1I9dlY2wOZwoTI1DXnKs6HKIfOr/WzAKpflJ6LLY8fj/HIGh2yq6JIpgDCNE/XBv6V0wjks0FH4Uchle+edJyIqPxvlmE55+9yjnj5AwDCNE12C22bGrshEAl2gofCXFqfD6D0qgUsiws7IJv9t2RnRJFKEYRoiuoexcC0wWO1I1KkzM0okuh8hvxmfpsPreCQCAP+yowubjesEVUSRiGCG6hr9+eRmAaxeNTCYJrobIv+6dnI1lM3IBACvfr8CXte1C66HIwzBC9DUdPVbPdsd7J2cLroYoMH5xxxjMKkxGl8WOh9cdwoVmk+iSKIIwjBB9zaav6tFjdaAgNQ6Th8WLLocoIKLkMrz2/RKMy9SixWTB0rcOoqnDLLosihAMI0Rf896hWgDAd27KhiRxiYYiR5xKgbeXTUFOYjRqWrvw8LpD6DRzZDz5H8MI0VXONHSgorYdCpmEf5rEJRqKPKkaNf788FQkxipxrM6AJ945AovNIbosCnMMI0RXeb/3qsgto1ORouFZNBSZ8pJj8dZDUxAdJcfnZ5vx5F/KGUjIrxhGiHpZbA5sOFoHAFgyJUdwNURiFefEY+0PSqCUy7DlRANWrGcgIf9hGCHqteN0A1pMFqRoVJgzMkV0OUTCzRmZgjeWlkCpkOGzkw340f+Ww2yziy6LwhDDCFGv9w9fAgB8e3I2FHJ+axABwNxRqXhz6U1QKWTYdqoBP3qHgYR8jz9xiQDoDT2e8e/fuYmNq0RXmz0yBf/94BSoFDJsP92If/nzEZi4y4Z8iGGECMBH5ZfgcAJTchOQnxInuhyioDOzMBlvPzQF6igZdp9pwnffOIDGjh7RZVGYYBihiOdwOPHBYfdsETauEvVnekEy1j82zbPt95/W7EdVY4fosigMMIxQxPv0eD0utHRBq1bgjgkZosshCmqThyXg4yemIzcpBnXt3bj31f34orpFdFkU4hhGKKI5HE781/azAIBHZuYjVqUQXBFR8MtNjsXHP5qBycPiYeyx4Qf/fRDv915dJBoMhhGKaP84rseZhk5o1Ao81HtqKRHdWGKsEusfm4bbx6XDYnfgmQ+/wqqPv0KPlTttyHsMIxSxrr4q8vCMPOiiowRXRBRa1FFyvPq9yfjpbSMhScBfDtbivrX7UdvaJbo0CjEMIxSxtpzQo7KhAxq1Ag/PzBNdDlFIkskkPHlrIf788M1IjFXieJ0Rd/7X59h+qkF0aRRCGEYoIjkcTvy+96rIMl4VIRqyWYUp2PTkTBTnuPpIHvnTYaz6+BhP/aUBYRihiPTZST1O6zugUSnwyAxeFSHyhcz4aLz/eCke6b3S+JeDNbj95T04wN02dAMMIxRxXFdFqgAAy2bkQhfDqyJEvqJUyPAfd43FXx6bhqz4aFxq68Z33ziAX/7tJLotbG6la2MYoYiz5YQep+qNiFOxV4TIX0pHJGHLT2bjgZtdgwTf2nce83+7G/84Vg+n0ym4Ogo2DCMUUQxdVjz31xMAgIdn5CI+Rim4IqLwFadSYPW9E/H2sinIio9GXXs3nvjfcix96yDONXWKLo+CCMMIRZQX/nYCjR1m5KfE4kfzCkSXQxQR5o1KxbaVc/DkLQVQymX4/Gwzbn95D/7/T0+hvcsiujwKAgwjFDG2nmzAx0frIJOA/3t/EdRRctElEUWMaKUcP10wCp/9ZDZuGZ0Kq92JN/ZUY9ZvduK/tp/lrpsIxzBCEaHNZMEvNhwDADw2Kx+ThyUIrogoMuUmx+Kth6bg7YemYHS6Bh1mG3679Qxm/5+dePPzaja5RijJGQKdREajETqdDgaDAVqtVnQ5FIKeevcoPqm4jBEpsfj7j2fxqghREHA4nPj7sXr8dusZnG82AQASYqLwg9JcPFg6HElxKsEV0lAN9Pc3wwiFvc3H9fjhO0cgk4CPfzQDxTnxoksioqvY7A58VH4Jf9hRhUtt3QAAlUKG+0qy8cjMPOSnxAmukAaLYYQIwLmmTty/tgytJguemDsC/3r7aNElEVE/bHYHNp/Q44091fjqksFz//QRSXjg5mFYMC4NKgWvaoYShhGKeJfaunD/2jLUG3owPkuLj56Yzh9kRCHA6XTiQHUr/vh5NXZWNsL9WyoxVon7SrLxT5OyMDpdA0mSxBZKN8QwQhGt0diD+18vw8WWLoxIicX7j5dy/ZkoBF1q68L7h2rx3uFaNBjNnvsLU+PwraJMfKs4E8OTYgVWSNfDMEIRq81kwZI3ynCmoRM5idH44PHpSNepRZdFRENgszuws7IJHxyuxa7KJljsDs/7xmdpMX9MGuaPScO4TC2vmAQRhhGKSMYeK77/5hf46pIBaVoVPnh8OoYlxYgui4h8yNBtxWcn9Pjrl5ex/1wL7I4rv8bStWrcMiYVswtTUJqfxLOnBGMYoYhz5GIrnn6vArWt3UiMVeK9f5mGwjSN6LKIyI+aO83YcboR20424POzzei2XplTIknA+EwdphckoTQ/CZOGJUAXzXASSAwjFDFsdgf+sKMKf9hxFg4nkJ0Qjdd/UIJxmTrRpRFRAPVY7SirbsGu043Yd64FVY19z7+RJGBkqgaThydg8rB4FOXEIz85Fgo553/6C8MIRYSLLSY8/V4Fjta0AwDunZSF5+8ZB62a//shinQNxh7sP9eMfVUtOHyhFRdaur7xGHWUDGMytBifqcO4TC0K0zQYmRYHDX+G+ATDCIW103oj/rjnPP76ZR2sdic0agV+tXg87inOEl0aEQWp5k4zjlxsQ/nFNpTXtOHEZSO6+hk/n6lTozBNg/yUWOQnxyI3ORZ5ybHI1EVDJmOD7ED5NYysWbMGL774IvR6PYqKivCHP/wBN998c7+P/+CDD/Af//EfuHDhAgoLC/Gb3/wGd9xxx4Bfj2GEAMDucGJfVTP++Hk1Pj/b7Ll/ZkEyfv3tCchOYKMqEQ2cw+HE+RYTjtcZcLzOgNP6Dpxp6OizhfjrlHIZMuPVyEmMQXZCNLITYpAZr0a6NhrpOjXStWpEKznPyM1vYeS9997D0qVLsXbtWkydOhUvv/wyPvjgA1RWViI1NfUbj9+/fz9mz56N1atX46677sL69evxm9/8BuXl5Rg/frxPPxkKP7WtXdhb1Yy9Z5ux71wz2rusAACZBCyakIHHZuVzvDsR+ZShy4ozja5gcqHZhPO9t5rWLljtN/6VqYuOQopGhZQ4letPjQqJsUokxSpdf8YpkRCjRHyMElq1Iqx7VvwWRqZOnYopU6bglVdeAQA4HA7k5OTgySefxM9//vNvPH7JkiUwmUzYtGmT575p06ahuLgYa9eu9eknQ6HF6XSi22pHq8mCNpMVTZ09ON/chfPNnTjfbEJ1kwn1hp4+z9GoFPh273kVOYm8EkJEgWOzO6A39uBSWzdqW7twqa0bl9q6oTd2o97Qg/r2nj67eQZKo1YgPiYKWnUUNGoFNOorf49TKRCrUiBOJUecWoEYpQIxSvlVf8oRrZQjOsp1C7ZgM9Df3wpvPqjFYsGRI0ewatUqz30ymQzz589HWVnZNZ9TVlaGlStX9rlv4cKF2LhxY7+vYzabYTZfuUxmNBq9KXPAXvqsEtW9J0UGE5GrkTcaFnR1dnVe9RcnnHA4AIfTCSdclz9tDiccTidsdidsDgd6rA70WO3ottrRY3XA2GOFxea41st4KGQSJg2Lx8yCFMwsTEJRdnzQfbMRUWRQyGXITohBdkIMpuUnfeP9TqcTxm4bGjt60NRhRlOnGU0dZjR2mNHSaUFblwUtJgtaTWa0mazoNNsAAB09NnT02AB0D7nGKLkEtUIOVZQc6igZVAoZ1FFyKBWuvysV8t4/ZVDKe28KGaLkMiybkSvsP3lehZHm5mbY7XakpaX1uT8tLQ2nT5++5nP0ev01H6/X6/t9ndWrV+OFF17wprRB2VfVjPLeXRgkjlIuQ2Lv5cvhSTHIT4lFXnIc8pJjMSpdgziVV/9MiYiEkCQJupgo6GKiBjTjyGp3wNhtRXu3Fe1dVhh7rOjoscHYbe0NKFaYzDZ0mu29f9rQZbGhy2Lvvbn+3m21e87vsdqdsNpt6OgNOt64qygjNMJIoKxatarP1RSj0YicnByfv86js/LR1NG3USkENhcNii8/q6uvnbivpMgkAJKE3j+gkEmQy2S9f0pQyCSoo+RQRblSulohh0atQGKsEjFKOcc3E1HEiZLLkBSnGvK5WU6nE2ab68pzl8Xu+XuP9crfLTYHzDbHVX/aYbU7YbG73rbaHcgQeGyGV2EkOTkZcrkcDQ0Nfe5vaGhAenr6NZ+Tnp7u1eMBQKVSQaXy/6Fmd0zI8PtrEBER+ZMkuf6zp46SIz5EW+m8WnxXKpUoKSnB9u3bPfc5HA5s374dpaWl13xOaWlpn8cDwNatW/t9PBEREUUWr5dpVq5ciQcffBA33XQTbr75Zrz88sswmUxYtmwZAGDp0qXIysrC6tWrAQBPPfUU5syZg5deegl33nkn3n33XRw+fBhvvPGGbz8TIiIiCkleh5ElS5agqakJzz77LPR6PYqLi7F582ZPk2pNTQ1ksisXXKZPn47169fj3//93/GLX/wChYWF2Lhx44BnjBAREVF44zh4IiIi8ouB/v7mwAYiIiISimGEiIiIhGIYISIiIqEYRoiIiEgohhEiIiISimGEiIiIhGIYISIiIqEYRoiIiEgohhEiIiISyutx8CK4h8QajUbBlRAREdFAuX9v32jYe0iEkY6ODgBATk6O4EqIiIjIWx0dHdDpdP2+PyTOpnE4HLh8+TI0Gg0kSfLZxzUajcjJyUFtbS3PvPEjfp0Dh1/rwODXOTD4dQ4Mf36dnU4nOjo6kJmZ2ecQ3a8LiSsjMpkM2dnZfvv4Wq2W/9ADgF/nwOHXOjD4dQ4Mfp0Dw19f5+tdEXFjAysREREJxTBCREREQkV0GFGpVHjuueegUqlElxLW+HUOHH6tA4Nf58Dg1zkwguHrHBINrERERBS+IvrKCBEREYnHMEJERERCMYwQERGRUAwjREREJFREh5E1a9YgNzcXarUaU6dOxcGDB0WXFHb27NmDu+++G5mZmZAkCRs3bhRdUthZvXo1pkyZAo1Gg9TUVCxevBiVlZWiywpLr732GiZOnOgZDlVaWop//OMfossKa7/+9a8hSRKefvpp0aWEneeffx6SJPW5jR49WkgtERtG3nvvPaxcuRLPPfccysvLUVRUhIULF6KxsVF0aWHFZDKhqKgIa9asEV1K2Nq9ezeWL1+OAwcOYOvWrbBarViwYAFMJpPo0sJOdnY2fv3rX+PIkSM4fPgwbrnlFtxzzz04ceKE6NLC0qFDh/D6669j4sSJoksJW+PGjUN9fb3ntnfvXiF1ROzW3qlTp2LKlCl45ZVXALjOv8nJycGTTz6Jn//854KrC0+SJGHDhg1YvHix6FLCWlNTE1JTU7F7927Mnj1bdDlhLzExES+++CIeeeQR0aWElc7OTkyePBmvvvoqfvWrX6G4uBgvv/yy6LLCyvPPP4+NGzeioqJCdCmReWXEYrHgyJEjmD9/vuc+mUyG+fPno6ysTGBlRENnMBgAuH5Jkv/Y7Xa8++67MJlMKC0tFV1O2Fm+fDnuvPPOPj+nyffOnj2LzMxM5Ofn43vf+x5qamqE1BESB+X5WnNzM+x2O9LS0vrcn5aWhtOnTwuqimjoHA4Hnn76acyYMQPjx48XXU5YOnbsGEpLS9HT04O4uDhs2LABY8eOFV1WWHn33XdRXl6OQ4cOiS4lrE2dOhXr1q3DqFGjUF9fjxdeeAGzZs3C8ePHodFoAlpLRIYRonC1fPlyHD9+XNi6byQYNWoUKioqYDAY8OGHH+LBBx/E7t27GUh8pLa2Fk899RS2bt0KtVotupywtmjRIs/fJ06ciKlTp2L48OF4//33A77sGJFhJDk5GXK5HA0NDX3ub2hoQHp6uqCqiIZmxYoV2LRpE/bs2YPs7GzR5YQtpVKJgoICAEBJSQkOHTqE3//+93j99dcFVxYejhw5gsbGRkyePNlzn91ux549e/DKK6/AbDZDLpcLrDB8xcfHY+TIkaiqqgr4a0dkz4hSqURJSQm2b9/uuc/hcGD79u1c+6WQ43Q6sWLFCmzYsAE7duxAXl6e6JIiisPhgNlsFl1G2Lj11ltx7NgxVFRUeG433XQTvve976GiooJBxI86Oztx7tw5ZGRkBPy1I/LKCACsXLkSDz74IG666SbcfPPNePnll2EymbBs2TLRpYWVzs7OPin7/PnzqKioQGJiIoYNGyawsvCxfPlyrF+/Hp988gk0Gg30ej0AQKfTITo6WnB14WXVqlVYtGgRhg0bho6ODqxfvx67du3Cli1bRJcWNjQazTf6nWJjY5GUlMQ+KB/72c9+hrvvvhvDhw/H5cuX8dxzz0Eul+OBBx4IeC0RG0aWLFmCpqYmPPvss9Dr9SguLsbmzZu/0dRKQ3P48GHMmzfP8/bKlSsBAA8++CDWrVsnqKrw8tprrwEA5s6d2+f+t99+Gw899FDgCwpjjY2NWLp0Kerr66HT6TBx4kRs2bIFt912m+jSiLx26dIlPPDAA2hpaUFKSgpmzpyJAwcOICUlJeC1ROycESIiIgoOEdkzQkRERMGDYYSIiIiEYhghIiIioRhGiIiISCiGESIiIhKKYYSIiIiEYhghIiIioRhGiIiISCiGESIiIhKKYYSIiIiEYhghIiIioRhGiIiISKj/B41nCXVheTdzAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "matplotlib.pyplot.plot(fx,fy)\n", "numpy.sum(fy)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" } }, "nbformat": 4, "nbformat_minor": 4 }