{ "cells": [ { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy\n", "import matplotlib.pyplot\n", "import os\n", "import scipy.interpolate\n", "import convolveLN\n", "import importlib\n", "importlib.reload(convolveLN)\n", "import propagateErrorLN\n", "importlib.reload(propagateErrorLN)\n" ] }, { "cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "qa=[ 0.003 -0.0035]\n", "[0] mean=0.003 std=0.0012 cv=0.40\n", "[1] mean=-0.0035 std=0.0014 cv=-0.40\n", "[x] mean=0.01 std=0.0018 cv=0.18\n", "qa=[ 0.003 -0.0035]\n", "A=0.003,0.0035\n", "cvPrime=[0.4 0.4]\n", "sigmaS=[0.38525317 0.38525317]\n", "muS=[-0.07421 -0.07421]\n", "Reading for sigma=0.38525317015992666\n", "Reading for sigma=0.38525317015992666\n", "B=0.0105\n", "mean/target= 1;1.1 fInt=1.00 hInt/fInt=1.00\n" ] }, { "data": { "text/plain": [ "[]" ] }, "execution_count": 83, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHCElEQVR4nO3df3yT5b0//leSNkkpNBUqDYVqmVSqUltXoJTjGfNjD2UPzlfrdrT24xHGh6NzE8TVw5HyQbqdbd/OTSZO2DhsMt3OGIxNmQOGK1U8KBXsDxTGD5EBLT/SH0CTNm2TNvf1+eNOQgNpaUqS+77D6/l45JH0znUn7/umP15c13Vf0QkhBIiIiIhUTK90AURERETXwsBCREREqsfAQkRERKrHwEJERESqx8BCREREqsfAQkRERKrHwEJERESqx8BCREREqhendAHhIEkSzp07h1GjRkGn0yldDhEREQ2BEAIdHR1IS0uDXj94H0pMBJZz584hPT1d6TKIiIhoGJqamjBhwoRB28REYBk1ahQA+YCTkpIUroaIiIiGwuFwID093f93fDAxEVh8w0BJSUkMLERERBozlOkcnHRLREREqsfAQkRERKo3rMCydu1aZGRkwGw2Iz8/H/v37x+0/ZYtW5CVlQWz2Yzs7Gzs2LEj4PnOzk4sWrQIEyZMQEJCAu68806sW7duOKURERFRDAo5sGzevBllZWWoqKhAfX09cnJyUFRUhJaWlqDt9+7di9LSUixcuBANDQ0oLi5GcXExDh065G9TVlaGnTt34r//+79x5MgRPPvss1i0aBHefvvt4R8ZERERxQydEEKEskN+fj6mTZuGNWvWAJDXQElPT8fixYuxbNmyq9qXlJTA6XRi27Zt/m0zZsxAbm6uvxdlypQpKCkpwQsvvOBvk5eXh6985Sv4/ve/f82aHA4HLBYL7HY7J90SERFpRCh/v0PqYXG73airq0NhYeHlF9DrUVhYiJqamqD71NTUBLQHgKKiooD2M2fOxNtvv42zZ89CCIH33nsPn332GWbPnh30NV0uFxwOR8CNiIiIYldIgaWtrQ0ejwepqakB21NTU2Gz2YLuY7PZrtn+1VdfxZ133okJEybAaDRizpw5WLt2Lb70pS8Ffc3KykpYLBb/jYvGERERxTZVXCX06quv4qOPPsLbb7+Nuro6rFq1Ck8//TR27doVtH15eTnsdrv/1tTUFOWKiYiIKJpCWjguJSUFBoMBzc3NAdubm5thtVqD7mO1Wgdt393djeXLl+Ott97C3LlzAQB33303Dhw4gJdeeumq4SQAMJlMMJlMoZROREREGhZSD4vRaEReXh6qq6v92yRJQnV1NQoKCoLuU1BQENAeAKqqqvzte3t70dvbe9WHHhkMBkiSFEp5REREFKNCXpq/rKwM8+fPx9SpUzF9+nSsXr0aTqcTCxYsAADMmzcP48ePR2VlJQBgyZIlmDVrFlatWoW5c+di06ZNqK2txfr16wHIy+nPmjULS5cuRUJCAm699Va8//77+PWvf42f/OQnYTxUIiIi0qqQA0tJSQlaW1uxcuVK2Gw25ObmYufOnf6JtY2NjQG9JTNnzsTGjRuxYsUKLF++HJmZmdi6dSumTJnib7Np0yaUl5fjsccew8WLF3HrrbfiBz/4AZ566qkwHCIRERFpXcjrsKgR12EhIvKSPMDn64Cb7wVuylG6GqJBRWwdFiIiUrnP1wG1i4B9/6Z0JURhxcBCRBQrpD7gyEvy40sHgL5uRcshCicGFiKiWNG4BXCekh+LPqD9U0XLIQonBhYiolggBHD4Rfmxzvur/WKtcvUQhRkDCxFRLDj/V6D9EyAuEch8Wt7GwEIxhIGFiCgWnNsu30+cB4zzfnDsBQYWih0MLEREscB5Wr5PvhsYnSc/dhwG+pzK1UQURgwsRESxoKtRvh9xCzK+W4/z7jGAkOSrhYhiAAMLEVEscHoDS+ItAICD3Zny1xwWohjBwEJEpHW9nYD7ovzYG1g+7Z4kf82JtxQjGFiIiLSuq0m+j08G4uXlzQ92eXtYGFgoRjCwEBFp3RXDQQBwqPs2+YHjGFe8pZjAwEJEpHVd3iuERlwOLBc8FkBvBCAAV4sydRGFEQMLEZHWBelhAXSAOVV+2N0c9ZKIwo2BhYhI64IGFgDmsfI9e1goBjCwEBFpXb81WAL4elh62MNC2sfAQkSkddfqYWFgoRgQp3QBRER0HSQP0H0GAFDw0+M439t++Tl/DwuHhEj72MNCRKRlPc2A1Is+oUdL7+jA5zgkRDGEgYWISMu8H3po602BB4bA50y+ISH2sJD2MbAQEWmZd8LtWffNVz+XwB4Wih0MLEREWuadcHuuN0hgMXHSLcUOBhYiIi3rGiSw+OawuC4AUl8UiyIKPwYWIiIt8/WwBBsSMqUA0EFenr8tqmURhRsDCxGRlnWfBQCc7025+jm9wRtagDkv/iGaVRGFHQMLEZGWeXtOLvZZgj/vHRZKiWuPUkFEkcHAQkSkZb7A4kkK/jwDC8UIBhYiIq3y9AB9TgBAe9+o4G28y/OPYWAhjWNgISLSKtcF+V5ngENKDN7G28NyMwMLaRwDCxGRVvmu/DGNgXw1UBDeHhYOCZHWMbAQEWmVr4fFFOQKIR9vDwuHhEjrhhVY1q5di4yMDJjNZuTn52P//v2Dtt+yZQuysrJgNpuRnZ2NHTt2BDyv0+mC3n784x8PpzwiohuDr4fFOCbo0xnLtmPBJnmdFvawkNaFHFg2b96MsrIyVFRUoL6+Hjk5OSgqKkJLS/AP19q7dy9KS0uxcOFCNDQ0oLi4GMXFxTh06JC/zfnz5wNuGzZsgE6nw9e+9rXhHxkRUaxzX7uH5YL3cucxcfZoVEQUMTohhAhlh/z8fEybNg1r1qwBAEiShPT0dCxevBjLli27qn1JSQmcTie2bdvm3zZjxgzk5uZi3bp1Qd+juLgYHR0dqK6uHlJNDocDFosFdrsdSUkDXNpHRBRrDn4POLgSuO3fkPFWcdAmafEt2HvH/4FLioPpMTegG2CuC5ECQvn7HVIPi9vtRl1dHQoLCy+/gF6PwsJC1NTUBN2npqYmoD0AFBUVDdi+ubkZ27dvx8KFCwesw+VyweFwBNyIiG44Q+phSZab6PuA3vbI10QUISEFlra2Nng8HqSmpgZsT01Nhc1mC7qPzWYLqf0bb7yBUaNG4atf/eqAdVRWVsJisfhv6enpoRwGEVFsCLhKaIAmwgiHZ4T8RU/woXsiLVDdVUIbNmzAY489BrPZPGCb8vJy2O12/62pqSmKFRIRqcRQrhIC0ObtZUFPc2TrIYqguFAap6SkwGAwoLk58Ju+ubkZVqs16D5Wq3XI7ffs2YNjx45h8+bNg9ZhMplgMplCKZ2IKPb4e1gGDyztfaMAEwDXxcjXRBQhIfWwGI1G5OXlBUyGlSQJ1dXVKCgoCLpPQUHBVZNnq6qqgrZ/7bXXkJeXh5ycnFDKIiK6Mfl6WAa4rNnH4RkpP+AcFtKwkHpYAKCsrAzz58/H1KlTMX36dKxevRpOpxMLFiwAAMybNw/jx49HZWUlAGDJkiWYNWsWVq1ahblz52LTpk2ora3F+vXrA17X4XBgy5YtWLVqVRgOi4joBhDQwzJw74l/2X53e8RLIoqUkANLSUkJWltbsXLlSthsNuTm5mLnzp3+ibWNjY3Q6y933MycORMbN27EihUrsHz5cmRmZmLr1q2YMmVKwOtu2rQJQgiUlpZe5yEREd0APG6gr0N+PMikWwCw93l7WBhYSMNCXodFjbgOCxHdcLrPA2+lATo98GgvMsr/MmDTpdY38PTYLcDtzwBTX4likUSDi9g6LEREpBL+ZflHy6FlEA6Pd0iIc1hIwxhYiIi0aIiXNAP9Jt1ySIg0jIGFiEiLhrBonI+dVwlRDGBgISLSopB6WHiVEGkfAwsRkRb557Bcu4flcmC5FMGCiCKLgYWISIvYw0I3GAYWIiIt8vaw/P/vtiJj2fZBm/on3fZ1AFJfpCsjiggGFiIiLXLLPSyX+kZds6m/hwUAeh2RqogoohhYiIi0yNvDcsljuWbTPsTB6THLX/BKIdIoBhYiIi1yDb2HBeDEW9I+BhYiIi3y97AM7eNI+AGIpHUMLEREWiP1Ar12AEPvYbFztVvSOAYWIiKtcdv9D/1XAF0DP0+ItI6BhYhIa3yhI24UPDAMaRd+nhBpHQMLEZHW+EKHMXnIu3DSLWkdAwsRkdb4eliGFVjaw10NUVQwsBARaY0vdMQnD3kXfmIzaR0DCxGR1lzXkFB7uKshigoGFiIirfHNQwmhh+XypFvOYSFtYmAhItKa65nDwiEh0igGFiIirfEO67yyp3XIu/CyZtI6BhYiIq3xho6AT2G+BjvnsJDGMbAQEWmNd1gnlMDikLw9LJ4uwOOOQFFEkcXAQkSkNf4elqEtyw8AnZ6Ey19wHgtpEAMLEZHW+HtYhh5YJBiAeO8nO3NYiDSIgYWISGuGMYcFAGC8KWB/Ii1hYCEi0hpv4LCHGFgOt8m/8h9f9064KyKKOAYWIiIt8bjlibPoN5F2iHw9MkkGZ9jLIoo0BhYiIi3ptfsfBkykHQLfnBeLoTOsJRFFAwMLEZGWeJfWd3hGyBNpQ+D7AET2sJAWMbAQEWnJcCfcAujwjAAAJLGHhTSIgYWISEu8lzR3DCewSPI+I/Xd4ayIKCqGFVjWrl2LjIwMmM1m5OfnY//+/YO237JlC7KysmA2m5GdnY0dO3Zc1ebIkSN44IEHYLFYkJiYiGnTpqGxsXE45RERxa5hLBrn0+Gd8zLS0BXOioiiIuTAsnnzZpSVlaGiogL19fXIyclBUVERWlpagrbfu3cvSktLsXDhQjQ0NKC4uBjFxcU4dOiQv82JEydw7733IisrC7t378ann36KF154AWazefhHRkQUi4axLL9PpyQPCY3SM7CQ9uiEECKUHfLz8zFt2jSsWbMGACBJEtLT07F48WIsW7bsqvYlJSVwOp3Ytm2bf9uMGTOQm5uLdevWAQAeffRRxMfH4ze/+c2wDsLhcMBiscButyMpKWlYr0FEpAmHfwQceB5/uHg//v3Mt0Pada5lD9be+iI+6pyCGU8ejFCBREMXyt/vkHpY3G436urqUFhYePkF9HoUFhaipqYm6D41NTUB7QGgqKjI316SJGzfvh233347ioqKMHbsWOTn52Pr1q0D1uFyueBwOAJuREQ3hOuYdNvpnXQ70sA5LKQ9IQWWtrY2eDwepKamBmxPTU2FzWYLuo/NZhu0fUtLCzo7O/HDH/4Qc+bMwV//+lc89NBD+OpXv4r3338/6GtWVlbCYrH4b+np6aEcBhGRdvmGhKThTLr1BhYOCZEGKX6VkCRJAIAHH3wQ3/72t5Gbm4tly5bhn//5n/1DRlcqLy+H3W7335qamqJZMhGRcq5j0q1voblRXIeFNCgulMYpKSkwGAxobm4O2N7c3Ayr1Rp0H6vVOmj7lJQUxMXF4c477wxoc8cdd+CDDz4I+pomkwkmkymU0omIYsP1rMPiv6yZPSykPSH1sBiNRuTl5aG6utq/TZIkVFdXo6CgIOg+BQUFAe0BoKqqyt/eaDRi2rRpOHbsWECbzz77DLfeemso5RERxb7ruUrIO4fFpO8DPK5wVkUUcSH1sABAWVkZ5s+fj6lTp2L69OlYvXo1nE4nFixYAACYN28exo8fj8rKSgDAkiVLMGvWLKxatQpz587Fpk2bUFtbi/Xr1/tfc+nSpSgpKcGXvvQl3Hfffdi5cyf+/Oc/Y/fu3eE5SiKiWOFfmj/0wOKU+i0V0esADDeHqyqiiAs5sJSUlKC1tRUrV66EzWZDbm4udu7c6Z9Y29jYCL3+csfNzJkzsXHjRqxYsQLLly9HZmYmtm7diilTpvjbPPTQQ1i3bh0qKyvxzDPPYPLkyfjjH/+Ie++9NwyHSEQUQ65jDosEAzo8CRhl6JY/RNHMwELaEfI6LGrEdViI6IaxOQHw9ODeI6/hTG/qtdtfoSZrPsYZLwBz6oDRX4xAgURDF7F1WIiISEGeHvmG4Q0JAZdXu0Uv168ibWFgISLSCrfd+0DnX1MlVL6JtwwspDUMLEREWuG9QgjxFohh/vr2B51e++ANiVSGgYWISCu8E25hTB72S3Swh4U0ioGFiEgrwhBYOIeFtIqBhYhIK/xDQsnDfonLPSwcEiJtYWAhItIK9rDQDYyBhYhIK3w9LJzDQjcgBhYiIq3wLsv/2r5Lw34J9rCQVjGwEBFpxXV8UrNPh29fzmEhjWFgISLSijAElk5PgvyAPSykMQwsRERa4Z3D4pBC/+BDHw4JkVYxsBARaUUYelgcHBIijWJgISLSCm8Pi90Tph4WIcJQFFF0MLAQEWlFWOaweAOL1AtIrjAURRQdDCxERFoRhsDilMyQhE7+gvNYSEMYWIiItMDT4+8RcVzHkJCAHp2S90ohN+exkHYwsBARaYG3d8Uj9HBK5ut6Kf+wUB97WEg7GFiIiLTAG1g6PCMgrvNXNy9tJi1iYCEi0gLfGizXMX/Fh4vHkRYxsBARaYH3c4SuZ9E4nw7JG3o4h4U0hIGFiEgLwnCFkA8/sZm0iIGFiEgLwjkkJHHSLWkPAwsRkRZEooeFQ0KkIQwsRERa4A0s17Msv08nh4RIgxhYiIi0IBJDQgwspCEMLEREWuAfEgrDVULsYSENYmAhItKCcM5h8fewcA4LaQcDCxGRFoR14Tj2sJD2MLAQEWlBGHtYOIeFtIiBhYhIC3w9LGFY6dYfejgkRBoyrMCydu1aZGRkwGw2Iz8/H/v37x+0/ZYtW5CVlQWz2Yzs7Gzs2LEj4Pmvf/3r0Ol0Abc5c+YMpzQiotgjxOWl+cP9WUJCXPfrEUVDyIFl8+bNKCsrQ0VFBerr65GTk4OioiK0tLQEbb93716UlpZi4cKFaGhoQHFxMYqLi3Ho0KGAdnPmzMH58+f9t9/97nfDOyIioljj6QakXgBhHhISfYCn57pfjygaQg4sP/nJT/DEE09gwYIFuPPOO7Fu3TqMGDECGzZsCNr+lVdewZw5c7B06VLccccd+N73vocvfvGLWLNmTUA7k8kEq9Xqv910003DOyIioljjnb8CnR5OKeG6X65LMgPQyV9wHgtpREiBxe12o66uDoWFhZdfQK9HYWEhampqgu5TU1MT0B4AioqKrmq/e/dujB07FpMnT8Y3v/lNXLhwYcA6XC4XHA5HwI2IKGZ5568gPhn+oHEdBPRAfJL3tTmPhbQhpMDS1tYGj8eD1NTUgO2pqamw2WxB97HZbNdsP2fOHPz6179GdXU1XnzxRbz//vv4yle+Ao/HE/Q1KysrYbFY/Lf09PRQDoOISFt8PSzGMPY8+wML/8NH2hCndAEA8Oijj/ofZ2dn4+6778Ztt92G3bt34/7777+qfXl5OcrKyvxfOxwOhhYiil3+wJIcvtdkYCGNCamHJSUlBQaDAc3NzQHbm5ubYbVag+5jtVpDag8AX/jCF5CSkoLPP/886PMmkwlJSUkBNyKimBUwJBQmHBIijQkpsBiNRuTl5aG6utq/TZIkVFdXo6CgIOg+BQUFAe0BoKqqasD2AHDmzBlcuHAB48aNC6U8IqLYFJEeFot8zx4W0oiQrxIqKyvDL37xC7zxxhs4cuQIvvnNb8LpdGLBggUAgHnz5qG8vNzffsmSJdi5cydWrVqFo0eP4jvf+Q5qa2uxaNEiAEBnZyeWLl2Kjz76CKdOnUJ1dTUefPBBTJo0CUVFRWE6TCIiDfP1sIQxsGw74vS+NgMLaUPIc1hKSkrQ2tqKlStXwmazITc3Fzt37vRPrG1sbIRefzkHzZw5Exs3bsSKFSuwfPlyZGZmYuvWrZgyZQoAwGAw4NNPP8Ubb7yB9vZ2pKWlYfbs2fje974Hk8kUpsMkItIwXw9LGIeEOvovHkekAcOadLto0SJ/D8mVdu/efdW2hx9+GA8//HDQ9gkJCXjnnXeGUwYR0Y0hAkNCHRKX5ydt4WcJERGpnXdZ/nD2sPATm0lrGFiIiNQuAnNY+InNpDUMLEREaheJISHOYSGNYWAhIlK7CKx02+HhHBbSFgYWIiK1i8DCcRwSIq1hYCEiUjMhIjIkxEm3pDUMLEREaubpAkSf/DislzX7AguHhEgbGFiIiNTM17uiiwMMI8L2sh39e1iECNvrEkUKAwsRkZr1Hw7S6cL2sv45LMIDeLrD9rpEkcLAQkSkZpH4pGYAXZIZHuH9E8B5LKQBDCxERGoWiU9qBgDo0Olfi4XzWEj9GFiIiNTMtyx/2ANL/4m37GEh9WNgISJSswh8UrMPL20mLWFgISJSM+8clt8dcCBj2fawvnQnL20mDWFgISJSM28Pi90zMuwv3cEeFtIQBhYiIjXz9rA4IhBYuDw/aQkDCxGRmnl7WBxSYthfmj0spCUMLEREauYLLJ4IBBaJn9hM2sHAQkSkZv4hofAHlsvrsLCHhdSPgYWISM38PSwRmMPCISHSEAYWIiI1i2QPCyfdkoYwsBARqZUQEZ3D4n9NzmEhDWBgISJSq75O+dOUwR4WIgYWIiK18vauuKU49AhT2F+ek25JSxhYiIjUyjd/RUoEoAv7y/sva3ZzSIjUj4GFiEitIrgsP9Bv4bg+hzxfhkjFGFiIiNTKG1g6IjB/RX5db2AREtDnjMh7EIULAwsRkVpF8JJmAPK8GH18wHsRqRUDCxGRSlX84UMAkVk0TqYD4i3yQ85jIZVjYCEiUqkkQyeAyPWwAADik+V79rCQyjGwEBGpVJJBnlcS0cBi9PWwtEfuPYjCYFiBZe3atcjIyIDZbEZ+fj72798/aPstW7YgKysLZrMZ2dnZ2LFjx4Btn3rqKeh0OqxevXo4pRERxYyoBBZ/DwuHhEjdQg4smzdvRllZGSoqKlBfX4+cnBwUFRWhpaUlaPu9e/eitLQUCxcuRENDA4qLi1FcXIxDhw5d1fatt97CRx99hLS0tNCPhIgoxlwOLJGawwL2sJBmhBxYfvKTn+CJJ57AggULcOedd2LdunUYMWIENmzYELT9K6+8gjlz5mDp0qW444478L3vfQ9f/OIXsWbNmoB2Z8+exeLFi/Hb3/4W8fHxwzsaIqIYYvHNYfEtoR8JnMNCGhFSYHG73airq0NhYeHlF9DrUVhYiJqamqD71NTUBLQHgKKiooD2kiTh8ccfx9KlS3HXXXeFUhIRUczyBZb2vlGRexNjsnzPq4RI5eJCadzW1gaPx4PU1NSA7ampqTh69GjQfWw2W9D2NpvN//WLL76IuLg4PPPMM0Oqw+VyweVy+b92OPg5GEQUeyyGDgBAuyeCgcV3WTN7WEjlFL9KqK6uDq+88gpef/116HRD+6yMyspKWCwW/y09PT3CVRIRRV+yt4clUkvzA2APC2lGSIElJSUFBoMBzc3NAdubm5thtVqD7mO1Wgdtv2fPHrS0tOCWW25BXFwc4uLicPr0aTz33HPIyMgI+prl5eWw2+3+W1NTUyiHQUSkfh43Rhq6AbCHhQgIMbAYjUbk5eWhurrav02SJFRXV6OgoCDoPgUFBQHtAaCqqsrf/vHHH8enn36KAwcO+G9paWlYunQp3nnnnaCvaTKZkJSUFHAjIoop7ksAAEnoLn/mTyT4e1jaI/ceRGEQ0hwWACgrK8P8+fMxdepUTJ8+HatXr4bT6cSCBQsAAPPmzcP48eNRWVkJAFiyZAlmzZqFVatWYe7cudi0aRNqa2uxfv16AMCYMWMwZsyYgPeIj4+H1WrF5MmTr/f4iIi0yX0RgLwGiwRD5N6H67CQRoQcWEpKStDa2oqVK1fCZrMhNzcXO3fu9E+sbWxshF5/ueNm5syZ2LhxI1asWIHly5cjMzMTW7duxZQpU8J3FEREscYbWCI6HARwHRbSDJ0QQihdxPVyOBywWCyw2+0cHiKi2HDmz8D/PIADXZko/vzliL3NqRV3AW9PBAxmoKQ7Yu9DFEwof78Vv0qIiIiC8Paw2KPVw+LpATyuwdsSKYiBhYhIjXxDQpFcNA4A4vr9r5bzWEjFGFiIiNTI5ZvDEsE1WABAbwDivKGIa7GQijGwEBGpUbQm3QKXL23mWiykYgwsRERqFK05LADXYiFNYGAhIlIj35BQX4SHhIB+q91ySIjUi4GFiEiNojQklLFsO3ad8F4dxB4WUjEGFiIiNYriHJYOT6L8gD0spGIMLEREauTyzWGJ/JCQwxdY2MNCKsbAQkSkNpLHf8VOxNdhAeDwhSJeJUQqxsBCRKQ2/YJDNHpYOiTvp0FzHRZSMQYWIiK18Q4HdXgS0Bf6Z9SGzD8kxB4WUjEGFiIitYnmGizoN+mWc1hIxRhYiIjUJpqr3KJ/DwuHhEi9GFiIiNQmmovGgT0spA0MLEREahPtHhaJPSykfgwsRERq447eGixA/yEhByCkqLwnUagYWIiI1MYV3R4W/5AQhBxaiFSIgYWISG18Q0JRWDQOAFzCCOhN8hccFiKVYmAhIlIb/xyW6AwJAQCM3k9s5sRbUikGFiIitXFFdx0WAEB8snzPwEIqxcBCRKQ2Ub5KCABgHO1970vRe0+iEDCwEBGpjTu667AAwLsn+wLem0htGFiIiNRESP5ejmhd1gz0681xXYjaexKFgoGFiEhN3O2A8AAALnksUXtbfzhiDwupFAMLEZGauNrk+7hRcIv4qL2t/xJqBhZSKQYWIiI1cbXK9+abo/q2l4eEGFhInRhYiIjUpMcbWEzRDiwcEiJ1Y2AhIlITbw/LrpPR/Uyf9r4k+QEDC6kUAwsRkZp457Bc6ovehFugXw8Lh4RIpRhYiIjUxDskdMHX4xEl/jks7GEhlWJgISJSE++Q0MUoXtIM9AssfZ2Axx3V9yYaimEFlrVr1yIjIwNmsxn5+fnYv3//oO23bNmCrKwsmM1mZGdnY8eOHQHPf+c730FWVhYSExNx0003obCwEPv27RtOaURE2uYLLFEeEurwjIAkdPIXXJ6fVCjkwLJ582aUlZWhoqIC9fX1yMnJQVFREVpaWoK237t3L0pLS7Fw4UI0NDSguLgYxcXFOHTokL/N7bffjjVr1uDgwYP44IMPkJGRgdmzZ6O1tXX4R0ZEpEXeOSwXozwkJMEAhydR/oLDQqRCOiGECGWH/Px8TJs2DWvWrAEASJKE9PR0LF68GMuWLbuqfUlJCZxOJ7Zt2+bfNmPGDOTm5mLdunVB38PhcMBisWDXrl24//77r1mTr73dbkdSUnR/yImIwmrrrUBXI4qPr8KB7slRfevdk59Ahuk8ULgHGHtvVN+bbkyh/P0OqYfF7Xajrq4OhYWFl19Ar0dhYSFqamqC7lNTUxPQHgCKiooGbO92u7F+/XpYLBbk5OQEbeNyueBwOAJuREQxwTskdCHKc1gArsVC6hZSYGlra4PH40FqamrA9tTUVNhstqD72Gy2IbXftm0bRo4cCbPZjJdffhlVVVVISUkJ+pqVlZWwWCz+W3p6eiiHQUSkTn1OwNMNIPpDQgBg55VCpGKquUrovvvuw4EDB7B3717MmTMHjzzyyIDzYsrLy2G32/23pqamKFdLRBQB3vkrLikOTikh6m9/qY/L85N6hRRYUlJSYDAY0NzcHLC9ubkZVqs16D5Wq3VI7RMTEzFp0iTMmDEDr732GuLi4vDaa68FfU2TyYSkpKSAGxGR5vX0v0JIF/W351ospGYhBRaj0Yi8vDxUV1f7t0mShOrqahQUFATdp6CgIKA9AFRVVQ3Yvv/rulyuUMojItI2hdZg8eGQEKlZXKg7lJWVYf78+Zg6dSqmT5+O1atXw+l0YsGCBQCAefPmYfz48aisrAQALFmyBLNmzcKqVaswd+5cbNq0CbW1tVi/fj0AwOl04gc/+AEeeOABjBs3Dm1tbVi7di3Onj2Lhx9+OIyHSkSkcv5VbpUJLO19XJ6f1CvkwFJSUoLW1lasXLkSNpsNubm52Llzp39ibWNjI/T6yx03M2fOxMaNG7FixQosX74cmZmZ2Lp1K6ZMmQIAMBgMOHr0KN544w20tbVhzJgxmDZtGvbs2YO77rorTIdJRKQBCq3B4sMhIVKzkNdhUSOuw0JEMeFAOXD4h/hV2/+H7577RtTf/r5RH+NXE78LjM4D5tRG/f3pxhOxdViIiCiCXMoOCdn5ic2kYgwsRERq4R8SUmgOC4eESMUYWIiI1ELxSbfewNJrB6Q+RWogGggDCxGRWniHhC55lJmL5x8SAviJzaQ6DCxERGqhcA+LBwYg3vveHBYilWFgISJSA6kX6G0HoNxlzQAA42j5nhNvSWUYWIiI1MB1Qb7X6QOHZqLN5A0s7GEhlWFgISJSA+/8FRhHQ4JBuTqMDCykTgwsRERq4J2/AtPNytbBISFSKQYWIiI16D4v3yeMU7YO0xj53rsmDJFaMLAQEalBj0oCi3msfO8boiJSCQYWIiI16LbJ92arsnX4hqR6WpStg+gKDCxERGqgliEhfw8LAwupCwMLEZEaqGRI6JE3TgAA/n7mpKJ1EF2JgYWISA18PSwKDwn5VtlNibMrWgfRlRhYiIjUwDuH5f6ff6ZoGW19yQCAJIMT8LgUrYWoPwYWIiKl9XX7l+Vv7b1J0VIcnkT0Cu/CdbxSiFSEgYWISGk9cu+KS4qHQ0pUtBQBPS76PnyRVwqRijCwEBEpzTsc1NI3GoBO2VrQ79OiGVhIRRhYiIiU5r1CqEXh4SAf3zwWBhZSEwYWIiKlea8Qau1TR2Dx97BwLRZSEQYWIiKl+YaEekcrXIiMQ0KkRgwsRERK8w0JqaaHJVl+wMBCKsLAQkSktG7fHBZ19LC0sYeFVIiBhYhIad4hIfXMYUmWH3AOC6kIAwsRkdJUNyTk62HhwnGkHgwsRERKkjxATzMA9QwJBfSwCKFoLUQ+DCxERAqauvJ3gJAgCd3lFWYV5u9h8fQAfZ3KFkPkxcBCRKSgsXGXAMghwQODwtXIuoUZTo9Z/oITb0klGFiIiBQ0Nv4iAN+y/OrBtVhIbRhYiIgUdHOcHFiU/pTmK/FKIVKbYQWWtWvXIiMjA2azGfn5+di/f/+g7bds2YKsrCyYzWZkZ2djx44d/ud6e3vx/PPPIzs7G4mJiUhLS8O8efNw7ty54ZRGRKQpY+PlISG1XCHk0+ZhDwupS8iBZfPmzSgrK0NFRQXq6+uRk5ODoqIitLQE/6beu3cvSktLsXDhQjQ0NKC4uBjFxcU4dOgQAKCrqwv19fV44YUXUF9fjzfffBPHjh3DAw88cH1HRkSkAWnx8qXD53tvVriSQFztltRGJ0Ro16zl5+dj2rRpWLNmDQBAkiSkp6dj8eLFWLZs2VXtS0pK4HQ6sW3bNv+2GTNmIDc3F+vWrQv6Hh9//DGmT5+O06dP45ZbbrlmTQ6HAxaLBXa7HUlJSaEcDhGRot5bNxX3JdXhP5qewe8vzVa6HL+l1jfw9NgtwO3PAFNfUbocilGh/P0OqYfF7Xajrq4OhYWFl19Ar0dhYSFqamqC7lNTUxPQHgCKiooGbA8AdrsdOp0OycnJQZ93uVxwOBwBNyIiLUozyj0s59Taw8I5LKQSIQWWtrY2eDwepKamBmxPTU2FzWYLuo/NZgupfU9PD55//nmUlpYOmLYqKythsVj8t/T09FAOg4hIHYTA+Hh1Bhb/5wl1B/9dTRRtqrpKqLe3F4888giEEPj5z38+YLvy8nLY7Xb/rampKYpVEhGFSa8dIw3dAIBz7hSFiwnkX3W3mxdAkDrEhdI4JSUFBoMBzc3NAdubm5thtVqD7mO1WofU3hdWTp8+jXfffXfQsSyTyQSTyRRK6URE6uNsBABc6EtCjzArXEyg873eANV1Rl6eX6dTtiC64YXUw2I0GpGXl4fq6mr/NkmSUF1djYKCgqD7FBQUBLQHgKqqqoD2vrBy/Phx7Nq1C2PGjAmlLCIibeqSA8s5t7qGgwDA1uv9PezpAnrbFa2FCAixhwUAysrKMH/+fEydOhXTp0/H6tWr4XQ6sWDBAgDAvHnzMH78eFRWVgIAlixZglmzZmHVqlWYO3cuNm3ahNraWqxfvx6AHFb+5V/+BfX19di2bRs8Ho9/fsvo0aNhNBrDdaxEROri7WFR2/wVAHAJE2AcDbgvAl1nAaO61omhG0/IgaWkpAStra1YuXIlbDYbcnNzsXPnTv/E2sbGRuj1lztuZs6ciY0bN2LFihVYvnw5MjMzsXXrVkyZMgUAcPbsWbz99tsAgNzc3ID3eu+99/DlL395mIdGRKRyXeoNLACAERO8geUMkDxF6WroBhfyOixqxHVYiEiTPvzfwOnf4fvn/g9+2fZVpau5yqmitcD5vwD5vwRuW6h0ORSDIrYOCxERhZHzNADgXO9YhQsZwIgJ8n3XGWXrIAIDCxGRclQ86RYAXv7QKT/oOqtsIURgYCEiUobU61/j5KxKe1gCLm0mUhgDCxGRErrPAUKCS4q7vKqsyjT7Lm3uZg8LKY+BhYhICd5Lms/33gyh0l/F532BhT0spALq/CkhIop1Kl6DxcfW5x0Scl8E+rqVLYZueAwsRERKUPmEWwBweBLRJXk/BoXDQqQwBhYiIiV4e1jOqriHBdBdXqKfVwqRwhhYiIiU4F2DxX8ljkrZeKUQqQQDCxGREjo/BwCcdo1TuJDBneeVQqQSDCxERNEm9QGdJwEAp9xpChczuGZeKUQqwcBCRBRtzlOA6AMM5stzRFTKP2TFHhZSGAMLEVG0OT6T70dlqnYNFh/2sJBaqPsnhYgoFnUcl+9HZSpbxxBcXp6fPSykLAYWIqJo01Bg8V8l1HMe8LiVLYZuaAwsRETR1nF5SEjtWvuSAcMIQEj+S7GJlMDAQkQUbd4elod/26ZwIUOhA0bdJj/0XopNpAQGFiKiaPK4/Mvyn3KPV7iYIRo5Sb7vOKFsHXRDY2AhIoqi+//zV4CQ0OlJkIdbtIA9LKQCDCxERFH0BZN8tY28YJxO2WKG6P9WdckP2MNCCmJgISKKogzjOQDASZe6V7jtz78abycDCymHgYWIKIommrQXWE67rPKDzr/LVwsRKYCBhYgoiib6hoQ0FFjO996MXmEAJBcXkCPFMLAQEUWRf0hIK1cIAfDAgCZ3qvwFJ96SQhhYiIiixW3HOOMFAMDfXdoJLADQ6BonP+DEW1IIAwsRUbS0fwoAOOdOgd0zSuFiQnPa7ZvHwh4WUgYDCxFRtFz6BABwpGeiwoWE7rTvSiH2sJBCGFiIiKKl3RtYujUYWPxXCjGwkDIYWIiIokXTPSy+OSyfA0IoWwzdkBhYiIiiQfIA9kMAtBlYmtxWADqgrwNwaeFDGynWMLAQEUVD5+eApxvdkgmnfFfcaIhLGHHWnSJ/0fGZssXQDYmBhYgoGrzDQcd6boUEg8LFDM/xnlvkB+0HlS2EbkjDCixr165FRkYGzGYz8vPzsX///kHbb9myBVlZWTCbzcjOzsaOHTsCnn/zzTcxe/ZsjBkzBjqdDgcOHBhOWURE6uWdcHtYgxNuffxDWd7Ls4miKeTAsnnzZpSVlaGiogL19fXIyclBUVERWlpagrbfu3cvSktLsXDhQjQ0NKC4uBjFxcU4dOiQv43T6cS9996LF198cfhHQkSkZhqecOtzpCdDfuA9FqJo0gkR2nTv/Px8TJs2DWvWrAEASJKE9PR0LF68GMuWLbuqfUlJCZxOJ7Zt2+bfNmPGDOTm5mLdunUBbU+dOoWJEyeioaEBubm5Q67J4XDAYrHAbrcjKSkplMMhIoqOrelA1xn8y+cvorbrLqWrGZbbTafw18mLgLhRwMPtgI6zCuj6hPL3O6TvNrfbjbq6OhQWFl5+Ab0ehYWFqKmpCbpPTU1NQHsAKCoqGrD9ULhcLjgcjoAbEZFquS4CXWcAAEc13MPyd9cEuKQ4+Uoh52mly6EbTEiBpa2tDR6PB6mpqQHbU1NTYbPZgu5js9lCaj8UlZWVsFgs/lt6evqwX4uIKOIu1sn3I7+ATmmEsrVchz7E4XOXd+Ith4UoyjTZn1deXg673e6/NTU1KV0SEdHAWj8EALzVdIvChVw//yq9nHhLURYXSuOUlBQYDAY0NzcHbG9ubobVag26j9VqDan9UJhMJphMpmHvT0QUVa0fAABqnXcqXMj180+8ZWChKAuph8VoNCIvLw/V1dX+bZIkobq6GgUFBUH3KSgoCGgPAFVVVQO2JyKKKVIfcOEjAMDHMRBY/HNwOCREURZSDwsAlJWVYf78+Zg6dSqmT5+O1atXw+l0YsGCBQCAefPmYfz48aisrAQALFmyBLNmzcKqVaswd+5cbNq0CbW1tVi/fr3/NS9evIjGxkacO3cOAHDs2DEAcu/M9fTEEBEprv0ToM8Je18ijrtiaEio8wTQ2wnEj1S2ILphhDyHpaSkBC+99BJWrlyJ3NxcHDhwADt37vRPrG1sbMT58+f97WfOnImNGzdi/fr1yMnJwR/+8Ads3boVU6ZM8bd5++23cc8992Du3LkAgEcffRT33HPPVZc9ExFpTos8HFTXdQeENqcNBrjosQBmKwAB2P+mdDl0Awl5HRY14josRKRaex4Gmv6AH52fh5+1PqJ0NWFxavZPAdtfgWnrgMxvKF0OaVjE1mEhIqIQCAG0yVcI1XZpf/6Kz5pPkgEAf3hni7KF0A2FgYWIKFKcJ4Hu84A+Hp90ZSpdTdh87JRX6p2WyCEhih4GFiKiSPHOX8FNeXCJ2FmKoa7rDniEHreabEDXWaXLoRsEAwsRUYT86S8bAAA/OzJB4UrCq1MacflTp1v2KFsM3TAYWIiIIkHqw5dH1QIAqh3TFS4m/PY7vVd6tv6PsoXQDYOBhYgoElo/hCXOiYt9SWjomqx0NWG33zuPhT0sFC0MLEREkXBuGwDgvY48SDAoXEz4+Sbewn4IcF1Qthi6ITCwEBFFwtk/AwDejcHhIEBeQO7zHu/cHO+HOxJFEgMLEVGYfXnlesBxDL3CgP/p+KLS5USMb1ho/R9fV7YQuiEwsBARhdn9SR8DAPZ1TkGHlKhwNZHzkTMbADBrVJ3CldCNgIGFiCjM5lj2AgDe7YjN4SCf3R1T0SsMmGxuBByfKV0OxTgGFiKicHIcw7TEw/AIPba136t0NRHl8IxETefd8hdNbypbDMU8BhYionA6IS8W915HHlr6xihcTOT9xf4P8oOmPypbCMU8BhYionCReoGTbwAAfn9xtsLFRMdf7TMgCR1wsRZwNipdDsUwBhYionA5twPoaUZrbzLedUxTupqouOBJvrwmS9NbyhZDMY2BhYgoXLzDQW+2/y/0IU7hYqLnL/aZ8gMOC1EEMbAQEYWD/ah/ddvfX/wnhYuJrnccBQB0QOse+TwQRQADCxFROPzt+4CQUGXPxwlXutLVRNX53puBCQ/IX3z2qrLFUMxiYCEiul72o8Dp3wEAVreUKlyMQiYvke///jrgvqRoKRSbGFiIiK5Xv96Vv3VPUroaZYz9MpB8N+DpAk68pnQ1FIMYWIiIrselA+xdAZBRvgP/cfDL8hfHXgWkPkXrodjDwEJENAwZy7bjtmVv49Cb/wIICbjl4Ru3d8XrT+2zAFMK0NUInPiF0uVQjGFgISIapidufgtTEk4AxpuAvJ8qXY7iXMIETKmQv/hkBeC6oGxBFFMYWIiIhuE2UxO+nfpbAMBzJ76OjO/yE4sBAJlPAcnZgPuiHFqIwoSBhYgoVK4L+GXGf8Kk78X/dNyDP176X0pXpB76OCDPe2nz5/8FXPhY2XooZjCwEBGFwuMG9nwNE03n0eROxbcbnwOgU7oq1chYth0ZL3cCt5YCEMAHDwM9bUqXRTGAgYWIaKg8LmDvY0DL++jwJGDhyRdwwZOsdFXqNO1nwMhJgPM09v76fty27G2lKyKNY2AhIhoKtx3Y/RWg6Q+A3ohFp5fhM1eG0lWpVsbKD/FPdd9GpycBM0d+isoJvNSZrg8DCxHRtVxsAKpmAs3vocOTgNLjFXi/M0/pqlTvuOtWPNf0bXiEHo+M3gV88Ajg6VG6LNIoBhYiooF4evDjn8yDe8d0wH4YLb034dG/V6LGmaN0ZZrxjmMmvnV6GVxSHHDmLdRtuAfo+FzpskiDGFiIiK7kccnLy/85E0utv4FR34ed9gLM+WzNDb843HC845iJr5/8Tzg8I5CXeBTYcTdw9GX5PBMN0bACy9q1a5GRkQGz2Yz8/Hzs379/0PZbtmxBVlYWzGYzsrOzsWPHjoDnhRBYuXIlxo0bh4SEBBQWFuL48ePDKY2IaHiEANoPAgeWAVvTgX3/BnSdwTl3Cp5tfA5PnV6Oix6L0lVqVo3zbnzlszX4sONuwNMN1Jfh3G8mYOWPnwJ6HUqXRxoQcmDZvHkzysrKUFFRgfr6euTk5KCoqAgtLS1B2+/duxelpaVYuHAhGhoaUFxcjOLiYhw6dMjf5kc/+hF++tOfYt26ddi3bx8SExNRVFSEnh6OdRJRhAgBdJ0BTv8e+HgR8OdJ8v/8D78IuFqBhPHAPS/hvmPrsbX9PvDS5et3tncs/vXk91F+ZhFsvaORZmzDf47/L+DNVOCDR4FTm4CeVqXLJJXSCSFEKDvk5+dj2rRpWLNmDQBAkiSkp6dj8eLFWLZs2VXtS0pK4HQ6sW3bNv+2GTNmIDc3F+vWrYMQAmlpaXjuuefw7//+7wAAu92O1NRUvP7663j00UevWZPD4YDFYoHdbkdSUlIoh0NEsUoIoK8DcF0Eus8DzpOA8xTQeRLo/DvQ/ingClwfxCXF438678GWi/+Easd0eGBQpvYbgEnnxiOj/4qvj9mG28xnAp8cdbu8Wq7vZrlLDpDxI5UpliImlL/fcaG8sNvtRl1dHcrLy/3b9Ho9CgsLUVNTE3SfmpoalJWVBWwrKirC1q1bAQAnT56EzWZDYWGh/3mLxYL8/HzU1NQEDSwulwsu1+WxT4eD3YmqJAQg9QKiV7733QK+dg+w3fd1HyA83pt0+TG8j6V+j69sM5THV+4LIdctH4D3sbh6e8BzQdr6jj/YvoO1C0o3wGMAuoGeG2I7gwkwJACGEUDcCO+992tDgnwL+rX3ptN7X0/X7z36f63znts+779lX79/076Bt/u39crDB56ea9/3OYHeS/i86TQshk4kx3UgXucZ4JzK+oQen/Xcin3OKfioMxt7Ou9Bl5Qw6D4UHi5hxG8u/DN+c2EushM+xz8n78GXRtbjjoRTQMdn8q3pj4E7xY0CRqQBCWmAcQwQn+S9Wfo9TgLiRuCxX30ClxSPPzx9H2AwA3qzfN//pou74mdDRaReOWy7L8ifyeS6cMXji/L3frCfGzH49/2wjJgAzNgQ/tcNQUiBpa2tDR6PB6mpqQHbU1NTcfTo0aD72Gy2oO1tNpv/ed+2gdpcqbKyEt/97ndDKf3GI4T3l3mX/Iu8rwvweO/7nPJzksvbpufqr0N+HCR4ROKHhugaJpmv2KA3AeaxwMiJQOJE730GYLkLcZa7cGdcAu4EsECBWqm/Z+W7nhbg0gGg/RBgPyjPK3IcA/o65R4zxzH5dg2//YL3wTuDNNLp+wUZE6A3Arp4wGC8+vFgz13ZTh8vhyH/f4KuuPcF7L7OfvedQG+nHERcF+RjVZNRtytdQWiBRS3Ky8sDem0cDgfS09MVrOg6SR7vN6tD/ibtdXhvHVds65Db9Q8hfc7gocTT5f3hUBmdwfvDHC/f+24Dfh0n7+O7Qe99jX6PdQb5F8+1HkMv76cbaF9vb4GvZ8DXE9H/a12/7Ve21Q1h+5Bev5+AEdsre2DE9beT3Je/X3z3nm7v91U30Nft7cG44tbX5V1PQwrSkxSkp8j3C1wX5/039f67+h/3237lNkOC9w9K//sBtplGA0bvzTRGvo9jj4mmmMcC42bLt/56O+Shve5z8r37ovf3ol2+d3vv+xyB/xHz9ABST+B/rnyE5P2e74ruMQ6ZTv4kcN/3s2mM3LNkGi3fx40Y4GfKgLDPuYpXfrpFSIElJSUFBoMBzc3NAdubm5thtVqD7mO1Wgdt77tvbm7GuHHjAtrk5uYGfU2TyQSTyRRK6ZHjGyd3twPuS0Fu3u2+H6RgQaTPGdka9UYgLtHb3Z/o7fr3/qLXmy53j4b62GDy/u/EJG+/ZgCJ84YCuiH4wgv/zSkc4kfJt6Tr/J++kOTLqfuHGE93v15it3zzuL29xVc8Dvac5P3a91hyyz3MOh3k/xz1v9fJvz/jRnp/H4+Ub/EjAUPi5dBtGgPEJ3v/c0ZAiIHFaDQiLy8P1dXVKC4uBiBPuq2ursaiRYuC7lNQUIDq6mo8++yz/m1VVVUoKCgAAEycOBFWqxXV1dX+gOJwOLBv3z5885vfDP2IIuHTCqCn+epQ0usNJOEa+tDHe8dfR3nHYkcBcUn9Ho+Sv6n7h4/+ISQuMUgwGSEHBaJoC+iNIlIJnd7b68aeN60J+S9ZWVkZ5s+fj6lTp2L69OlYvXo1nE4nFiyQR4DnzZuH8ePHo7KyEgCwZMkSzJo1C6tWrcLcuXOxadMm1NbWYv369QAAnU6HZ599Ft///veRmZmJiRMn4oUXXkBaWpo/FCnu8/+SA8tg9EZv190Vt/hk72PLFWHEG0L6bzOopNeIiIhIZUIOLCUlJWhtbcXKlSths9mQm5uLnTt3+ifNNjY2Qq+/3AU8c+ZMbNy4EStWrMDy5cuRmZmJrVu3YsqUKf42//Ef/wGn04knn3wS7e3tuPfee7Fz506YzVfOnlPI5GfkrkJ/+Ljyluy9YoL/myQiIoqEkNdhUSOuw0JERKQ9ofz95mw4IiIiUj0GFiIiIlI9BhYiIiJSPQYWIiIiUj0GFiIiIlI9BhYiIiJSPQYWIiIiUj0GFiIiIlI9BhYiIiJSPQYWIiIiUj0GFiIiIlI9BhYiIiJSPQYWIiIiUr04pQsIB98HTjscDoUrISIioqHy/d32/R0fTEwElo6ODgBAenq6wpUQERFRqDo6OmCxWAZtoxNDiTUqJ0kSzp07h1GjRkGn04X99R0OB9LT09HU1ISkpKSwv34s4bkaOp6roeF5Gjqeq6HjuRq6SJ4rIQQ6OjqQlpYGvX7wWSox0cOi1+sxYcKEiL9PUlISv7GHiOdq6Hiuhobnaeh4roaO52roInWurtWz4sNJt0RERKR6DCxERESkegwsQ2AymVBRUQGTyaR0KarHczV0PFdDw/M0dDxXQ8dzNXRqOVcxMemWiIiIYht7WIiIiEj1GFiIiIhI9RhYiIiISPUYWIiIiEj1GFgAXLx4EY899hiSkpKQnJyMhQsXorOzc9B9enp68PTTT2PMmDEYOXIkvva1r6G5udn//IULFzBnzhykpaXBZDIhPT0dixYt0vznHUXiXH3yyScoLS1Feno6EhIScMcdd+CVV16J9KFEXCTOFQA888wzyMvLg8lkQm5ubgSPIHLWrl2LjIwMmM1m5OfnY//+/YO237JlC7KysmA2m5GdnY0dO3YEPC+EwMqVKzFu3DgkJCSgsLAQx48fj+QhRE24z9Wbb76J2bNnY8yYMdDpdDhw4EAEq4+ucJ6r3t5ePP/888jOzkZiYiLS0tIwb948nDt3LtKHEXHh/p76zne+g6ysLCQmJuKmm25CYWEh9u3bF/7CBYk5c+aInJwc8dFHH4k9e/aISZMmidLS0kH3eeqpp0R6erqorq4WtbW1YsaMGWLmzJn+5y9evCh+9rOfiY8//licOnVK7Nq1S0yePPmar6t2kThXr732mnjmmWfE7t27xYkTJ8RvfvMbkZCQIF599dVIH05EReJcCSHE4sWLxZo1a8Tjjz8ucnJyIngEkbFp0yZhNBrFhg0bxN/+9jfxxBNPiOTkZNHc3By0/YcffigMBoP40Y9+JA4fPixWrFgh4uPjxcGDB/1tfvjDHwqLxSK2bt0qPvnkE/HAAw+IiRMniu7u7mgdVkRE4lz9+te/Ft/97nfFL37xCwFANDQ0ROloIivc56q9vV0UFhaKzZs3i6NHj4qamhoxffp0kZeXF83DCrtIfE/99re/FVVVVeLEiRPi0KFDYuHChSIpKUm0tLSEtfYbPrAcPnxYABAff/yxf9tf/vIXodPpxNmzZ4Pu097eLuLj48WWLVv8244cOSIAiJqamgHf65VXXhETJkwIX/FRFs1z9a1vfUvcd9994Ss+yqJxrioqKjQZWKZPny6efvpp/9cej0ekpaWJysrKoO0feeQRMXfu3IBt+fn54hvf+IYQQghJkoTVahU//vGP/c+3t7cLk8kkfve730XgCKIn3Oeqv5MnT8ZUYInkufLZv3+/ACBOnz4dnqIVEI3zZLfbBQCxa9eu8BTtdcMPCdXU1CA5ORlTp071byssLIRerx+wS6uurg69vb0oLCz0b8vKysItt9yCmpqaoPucO3cOb775JmbNmhXeA4iiaJ0rALDb7Rg9enT4io+yaJ4rLXG73airqws4Rr1ej8LCwgGPsaamJqA9ABQVFfnbnzx5EjabLaCNxWJBfn6+ps9bJM5VrIrWubLb7dDpdEhOTg5L3dEWjfPkdruxfv16WCwW5OTkhK94cA4LbDYbxo4dG7AtLi4Oo0ePhs1mG3Afo9F41TdtamrqVfuUlpZixIgRGD9+PJKSkvDLX/4yrPVHU6TPlc/evXuxefNmPPnkk2GpWwnROlda09bWBo/Hg9TU1IDtgx2jzWYbtL3vPpTX1IJInKtYFY1z1dPTg+effx6lpaWa/bDESJ6nbdu2YeTIkTCbzXj55ZdRVVWFlJSUsNYfs4Fl2bJl0Ol0g96OHj0a8Tpefvll1NfX409/+hNOnDiBsrKyiL9nqNRyrgDg0KFDePDBB1FRUYHZs2dH5T1DoaZzRUTR0dvbi0ceeQRCCPz85z9XuhxVuu+++3DgwAHs3bsXc+bMwSOPPIKWlpawvkdcWF9NRZ577jl8/etfH7TNF77wBVit1qtOal9fHy5evAir1Rp0P6vVCrfbjfb29oD/DTc3N1+1j9VqhdVqRVZWFkaPHo1//Md/xAsvvIBx48YN67giQS3n6vDhw7j//vvx5JNPYsWKFcM6lkhTy7nSqpSUFBgMhquufBrsGK1W66DtfffNzc0BP1fNzc2avYoKiMy5ilWRPFe+sHL69Gm8++67mu1dASJ7nhITEzFp0iRMmjQJM2bMQGZmJl577TWUl5eHrf6Y7WG5+eabkZWVNejNaDSioKAA7e3tqKur8+/77rvvQpIk5OfnB33tvLw8xMfHo7q62r/t2LFjaGxsREFBwYA1SZIEAHC5XGE6yvBQw7n629/+hvvuuw/z58/HD37wg8gd7HVSw7nSMqPRiLy8vIBjlCQJ1dXVAx5jQUFBQHsAqKqq8refOHEirFZrQBuHw4F9+/Zp+rxF4lzFqkidK19YOX78OHbt2oUxY8ZE5gCiJJrfU5Ikhf9vXVin8GrUnDlzxD333CP27dsnPvjgA5GZmRlw+emZM2fE5MmTxb59+/zbnnrqKXHLLbeId999V9TW1oqCggJRUFDgf3779u1iw4YN4uDBg+LkyZNi27Zt4o477hD/8A//ENVjC7dInKuDBw+Km2++Wfzrv/6rOH/+vP8W7kvioi0S50oIIY4fPy4aGhrEN77xDXH77beLhoYG0dDQIFwuV9SO7Xps2rRJmEwm8frrr4vDhw+LJ598UiQnJwubzSaEEOLxxx8Xy5Yt87f/8MMPRVxcnHjppZfEkSNHREVFRdDLmpOTk8Wf/vQn8emnn4oHH3wwZi5rDve5unDhgmhoaBDbt28XAMSmTZtEQ0ODOH/+fNSPL5zCfa7cbrd44IEHxIQJE8SBAwcCfjdp5WctmHCfp87OTlFeXi5qamrEqVOnRG1trViwYIEwmUzi0KFDYa2dgUXIP8ClpaVi5MiRIikpSSxYsEB0dHT4n/dd/vfee+/5t3V3d4tvfetb4qabbhIjRowQDz30UMAP/LvvvisKCgqExWIRZrNZZGZmiueff15cunQpikcWfpE4VxUVFQLAVbdbb701ikcWfpE4V0IIMWvWrKDn6+TJk1E6suv36quviltuuUUYjUYxffp08dFHH/mfmzVrlpg/f35A+9///vfi9ttvF0ajUdx1111i+/btAc9LkiReeOEFkZqaKkwmk7j//vvFsWPHonEoERfuc/WrX/0q6PdPRUVFFI4mssJ5rnw/n8Fu/X9mtSic56m7u1s89NBDIi0tTRiNRjFu3DjxwAMPiP3794e9bp0QQoS3z4aIiIgovGJ2DgsRERHFDgYWIiIiUj0GFiIiIlI9BhYiIiJSPQYWIiIiUj0GFiIiIlI9BhYiIiJSPQYWIiIiUj0GFiIiIlI9BhYiIiJSPQYWIiIiUj0GFiIiIlK9/wclZKvRUbKT8AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "muTarget=0.01\n", "cv=numpy.array([0.4,0.4])\n", "mu0=numpy.array([1.0,1.0])\n", "dydx=numpy.array([0.003,-0.0035])\n", "fmax=0.03\n", "nb=100\n", "fx=numpy.linspace(-fmax,fmax,2*nb+1)\n", "h=propagateErrorLN.generateDistribution(fx,muTarget,mu0,cv,dydx,1)\n", "y=propagateErrorLN.calculateDistribution(fx,muTarget,mu0,cv,dydx)\n", "h0=numpy.sum(fx*h)/numpy.sum(h)\n", "y0=numpy.sum(fx*y)/numpy.sum(y)\n", "\n", "q=numpy.array([h0,y0])\n", "if muTarget!=0:\n", " q/=muTarget\n", "\n", " \n", "print('mean/target={:2.2g};{:2.2g} fInt={:.2f} hInt/fInt={:.2f}'.format(q[0],q[1],\n", " numpy.sum(y),numpy.sum(h)/numpy.sum(y)))\n", "matplotlib.pyplot.bar(fx,h,fmax/nb)\n", "matplotlib.pyplot.plot(fx,y,color='orange')\n" ] }, { "cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.29356038 0.29356038]\n", "[2.43987137e-01+0.00000000e+00j 2.45110495e-01-2.44527012e-02j\n", " 2.43590371e-01-4.91260136e-02j ... 7.57700368e-27-5.41816969e-27j\n", " 7.50087710e-27-5.40592089e-27j 7.42537332e-27-5.39348347e-27j]\n", "[2.63090977e+00-0.00000000e+00j 2.60495558e+00+1.89292222e-01j\n", " 2.56550644e+00+3.74802156e-01j ... 2.68359363e-44+1.71020205e-44j\n", " 2.59169038e-44+1.72201602e-44j 2.50163352e-44+1.73184640e-44j]\n" ] } ], "source": [ "n=2000\n", "qz,fa,u0,h=convolveLN.getZArray(n)\n", "cv=numpy.array([0.3,0.3])\n", "mu=numpy.array([1.5,1])\n", "sigma=numpy.sqrt(numpy.log(1+cv*cv))\n", "muS=numpy.log(mu/numpy.sqrt(1+cv*cv))\n", "print(sigma)\n", "#q1=convolveLN.getComplexConjugatedLTransformAtMinusComplexConjugatedZGrid(0.3,qz)\n", "q1=convolveLN.getLTransformGrid(sigma[0],qz,muS[0])\n", "q2=convolveLN.getComplexConjugatedLTransformAtMinusComplexConjugatedZGrid(0.1,qz,muS[1])\n", "q3=convolveLN.getLTransformGrid(sigma[1],qz,muS[1])\n", "fmax=5\n", "nb=100\n", "fx=numpy.linspace(0,fmax,nb+1)\n", "print(q1)\n", "print(q2)\n", "fy=convolveLN.inverseL(fx,qz,q1*q3,fa,u0,h,n)" ] }, { "cell_type": "code", "execution_count": 81, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "61.91493950447091" ] }, "execution_count": 81, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCEklEQVR4nO3deXTT55k2/usryZK8SPK+G2xjs4MNDgGzkxAIWRomTUozbUnIMmkKaVLaX6Z0ZrJ0en60b9606TQkJM0ktJOh2SEtTSHsBDBhMU5YDcaAjbG8W7JlW/v7hyyBEwyWLenRcn3O0QHLknXbB9sX3+d+7kdyOp1OEBEREQkiE10AERERRTaGESIiIhKKYYSIiIiEYhghIiIioRhGiIiISCiGESIiIhKKYYSIiIiEYhghIiIioRSiCxgIh8OBy5cvQ6PRQJIk0eUQERHRADidTnR0dCAzMxMyWf/XP0IijFy+fBk5OTmiyyAiIqJBqK2tRXZ2dr/vD4kwotFoALg+Ga1WK7gaIiIiGgij0YicnBzP7/H+hEQYcS/NaLVahhEiIqIQc6MWCzawEhERkVAMI0RERCQUwwgREREJ5VUYWb16NaZMmQKNRoPU1FQsXrwYlZWV133OunXrIElSn5tarR5S0URERBQ+vAoju3fvxvLly3HgwAFs3boVVqsVCxYsgMlkuu7ztFot6uvrPbeLFy8OqWgiIiIKH17tptm8eXOft9etW4fU1FQcOXIEs2fP7vd5kiQhPT19cBUSERFRWBtSz4jBYAAAJCYmXvdxnZ2dGD58OHJycnDPPffgxIkTQ3lZIiIiCiODDiMOhwNPP/00ZsyYgfHjx/f7uFGjRuGtt97CJ598gnfeeQcOhwPTp0/HpUuX+n2O2WyG0WjscyMiIqLwJDmdTudgnvjEE0/gH//4B/bu3XvdEa9fZ7VaMWbMGDzwwAP4z//8z2s+5vnnn8cLL7zwjfsNBgOHnhEREYUIo9EInU53w9/fg7oysmLFCmzatAk7d+70KogAQFRUFCZNmoSqqqp+H7Nq1SoYDAbPrba2djBlEhERUQjwqoHV6XTiySefxIYNG7Br1y7k5eV5/YJ2ux3Hjh3DHXfc0e9jVCoVVCqV1x+biIiIQo9XYWT58uVYv349PvnkE2g0Guj1egCATqdDdHQ0AGDp0qXIysrC6tWrAQC//OUvMW3aNBQUFKC9vR0vvvgiLl68iEcffdTHnwoRERGFIq/CyGuvvQYAmDt3bp/73377bTz00EMAgJqaGshkV1Z/2tra8Nhjj0Gv1yMhIQElJSXYv38/xo4dO7TKiUiYVpMFfzlYA6fTicz4aGTGRyMrPhrpOjWi5BzsTETeGXQDayANtAGGiPxvywk9/m3DMTR3Wr7xvsRYJV5eUozZI1MEVEZEwcavDaxEFHnauyx4+t2jePx/jqC504LC1DjcV5KN6SOSkJccC6VChlaTBcvWHcI7BzhlmYgGzqtlGiKKTHvPNuMn71egqcMMmQQ8PmcEnrq1EOoouecxZpsdqz4+ho/L6/DvG4/jfLMJv7hjDOQySWDlRBQKGEaI6LpqW7vwL/9zGF0WO/JTYvHS/UWYNCzhG49TKeR46f4i5CfH4v9+dgb/vfc8LrZ04fffLUasij9qiKh/XKYhon45HE488+FX6LLYMSU3AZ/+eNY1g4ibJElYcUsh/vDAJCgVMmw71YAn/rccIdCaRkQCMYwQUb/e+eIiyqpbEB0lx4v3FfVZlrmeu4sy8ZfHpkGlkGHPmSa8f5iDC4mofwwjRHRNNS1dWP3paQDAv94+CrnJsV49v2R4An66YCQA4FebTqHe0O3zGokoPDCMENE3OBxO/OzDL9FttWNqXiKWluYO6uM8MjMfxTnx6DDb8IuPj3G5hoiuiWGEiL7hT2UXcPB8K2KUruUZ2SB3xMhlEl68byKUchl2Vjbh4/I6H1dKROGAYYSI+qhp6cJvNruWZ1YtGo1hSTFD+niFaRo8Nb8QAPDC306g0dgz5BqJKLwwjBBRH298fg49Vgem5Sfie1OH++RjPj47HxOydDD22PBvG49zuYaI+mAYISIPQ7cVHx1xLaX8+NbCQS/PfJ1CLsOL909ElFzC1pMN2H2myScfl4jCA8MIEXm8f6gW3VY7RqVpUJqf5NOPPTpdiwd7G2HX7Kzy6ccmotDGMEJEAAC7w4k/lV0AACybkQtJ8v0Y98dm50Mpl+HQhTYcPN/q849PRKGJYYSIAADbTzXgUls34mOicE9xll9eI02rxn03ZQPg1REiuoJhhIgAAG/vuwAA+O6UYYhWDmzS6mD8cPYIyGUSdp9pwvE6g99eh4hCB8MIEeG03oiy6hbIZRJ+UOqbHTT9GZYUg28VZQIAXt3FqyNExDBCRADW9V4VWTguDVnx0X5/vSfmjgAA/OO4HlWNnX5/PSIKbgwjRBGuzWTBhqOu7bwPTc8LyGuOTNNgwdg0OJ3Aa7vOBeQ1iSh4MYwQRbh3D9XCbHNgXKYWU3ITAva6P5pXAADYWFGH2taugL0uEQUfhhGiCOZ0OrH+4EUAwEPT/bOdtz/FOfGYWZAMu8OJP35eHbDXJaLgwzBCFMFOXDaitrUb0VFy3DUxM+Cv/8M5rt6Rj8vr0GWxBfz1iSg4MIwQRbDNx/UAgLmjUvy6nbc/00ckYVhiDDrNNnx6TB/w1yei4MAwQhTBNp9wBYDbx6cLeX2ZTMJ3eoegvX+oVkgNRCQewwhRhKpq7EBVYyei5BLmjU4VVsd9JTmQScDBC62obuI2X6JIxDBCFKG2nGgAAMwoSIZWHSWsjnSdGnNGpgAA3j98SVgdRCQOwwhRhHL3i9w+TswSzdWWTMkBAHxUfgk2u0NwNUQUaAwjRBHoUlsXjtUZIJOA+WPTRJeDW0anISlWiaYOM3ZVNokuh4gCjGGEKAK5l2im5CYiOU4luBpAqZDh3smuk4LfO8xGVqJIwzBCFIE2H68HIG4XzbV85ybXUs2O041o7OgRXA0RBRLDCFGEaezoweGLbQCAhUHQL+JWmKbBpGHxsDuc+Li8TnQ5RBRADCNEEWbryQY4nUBRtg6ZATih1xtLeq+OvH+oFk6nU3A1RBQoDCNEEca9i2ZhEC3RuN1VlIkYpRzVzSaU17SJLoeIAoRhhCiCGLqsKDvXAiA4tvR+XZxK4Vk62vRVveBqiChQGEaIIsjOykbYHE6MTItDfkqc6HKu6c4JGQCAT4/Vw+HgUg1RJGAYIYoge6uaAQDzRokb/34js0YmQ6NSoMFoxhEu1RBFBIYRogjhdDo9SzTTC5IFV9M/lUKO23oHsf2dSzVEEYFhhChC1LR2oa69G1FyCVNyE0SXc113TuRSDVEkYRghihD7e6+KTMpJQIxSIbia65tZmAyNWoHGDrNnJgoRhS+GEaII4Q4jpSOSBFdyY1cv1Xx6jEs1ROGOYYQoArj6RVzNq9NDIIwAwF1XLdXYuVRDFNYYRogiwNnGTjR3WqCOkqF4WLzocgZkZkHKlaWaC62iyyEiP2IYIYoA+3u39E7JTYRKIRdczcAoFTIsGOsagMalGqLwxjBCFAH2ubf0jgjeLb3X4lmqOa7nUg1RGGMYIQpzdocTB6rdYSQ0+kXcZhQkQ6tWoKnDjENcqiEKWwwjRGHuxGUDOnps0KgVGJepFV2OV5QKGRb0nlXDAWhE4YthhCjMubf0Ts1LgkIeet/y7rNqPjuph9PJpRqicBR6P5mIyCvuMDKjILSWaNxKRyQhRilHg9GM43VG0eUQkR8wjBCFMYvNgUPnXb0Woda86qaOkmN2YQoAYOupBsHVEJE/MIwQhbEvL7Wj22pHUqwSI9PiRJczaLeOcZ0yvO0kwwhROGIYIQpj+6uujICXJElwNYN3y+hUSBJwst6Iy+3dosshIh9jGCEKY/s8I+BDc4nGLSlOhZJhrpOGt3OphijsMIwQhSmLzYGK2nYAwLT8RLHF+MCtY1wH52071Si4EiLyNYYRojB1st4Ii82BxFgl8pJjRZczZLeNdfWNlJ1rQafZJrgaIvIlhhGiMFV+sQ0AMCknPqT7RdxGpMRheFIMLHYHPj/TJLocIvIhhhGiMHW0d4lmUoic0nsjkiRhPpdqiMISwwhRmHJfGZnc2/gZDtxhZGdlIw/OIwojDCNEYajR2IO69m7IJGBiTrzocnzmptwEaNUKtJosOFrTJrocIvIRhhGiMFRe0w4AGJmmQZxKIbYYH4qSyzBvtKuRldNYicKHV2Fk9erVmDJlCjQaDVJTU7F48WJUVlbe8HkffPABRo8eDbVajQkTJuDTTz8ddMFEdGNHa3ubV8NoicbN0zfCaaxEYcOrMLJ7924sX74cBw4cwNatW2G1WrFgwQKYTKZ+n7N//3488MADeOSRR3D06FEsXrwYixcvxvHjx4dcPBFd29GL7QCAyWHSvHq1OaNSoJBJONdkwvnm/n/2EFHokJxDOJO7qakJqamp2L17N2bPnn3NxyxZsgQmkwmbNm3y3Ddt2jQUFxdj7dq1A3odo9EInU4Hg8EArVY72HKJIoLV7sCE57egx+rAtpVzUJAaumfS9Oef/3gA+8+14Nm7xuLhmXmiyyGifgz09/eQekYMBgMAIDGx/+mOZWVlmD9/fp/7Fi5ciLKysn6fYzabYTQa+9yIaGBO13egx+qALjoK+WEw7Oxa5o5yneK7m/NGiMLCoMOIw+HA008/jRkzZmD8+PH9Pk6v1yMtLa3PfWlpadDr9f0+Z/Xq1dDpdJ5bTk7OYMskijjufpHinHjIZKE/7Oxa5o5yNbEeqG5Bj9UuuBoiGqpBh5Hly5fj+PHjePfdd31ZDwBg1apVMBgMnlttba3PX4MoXIXjfJGvK0yNQ4ZODbPNgbLqFtHlENEQDSqMrFixAps2bcLOnTuRnZ193cemp6ejoaFv13tDQwPS09P7fY5KpYJWq+1zI6KBCbfJq9ciSdKVpZpKLtUQhTqvwojT6cSKFSuwYcMG7NixA3l5N24cKy0txfbt2/vct3XrVpSWlnpXKRHdUHOnGRdbuiBJQHEYhxEAmDPStVTDvhGi0OdVGFm+fDneeecdrF+/HhqNBnq9Hnq9Ht3d3Z7HLF26FKtWrfK8/dRTT2Hz5s146aWXcPr0aTz//PM4fPgwVqxY4bvPgogAABW9w84KUuKgVUeJLcbPZhQkQSGTcL7ZhIst3OJLFMq8CiOvvfYaDAYD5s6di4yMDM/tvffe8zympqYG9fX1nrenT5+O9evX44033kBRURE+/PBDbNy48bpNr0Q0OOU14d8v4qZRR6FkuOvz5NURotDm1ZzogYwk2bVr1zfuu//++3H//fd781JENAhHe6+MhHO/yNXmjkrFF+dbsauyCUtLc0WXQ0SDxLNpiMKEze7Al5faAYTnGPhrcTex7j/XzC2+RCGMYYQoTJxp6ESXxQ6NSoHCMJy6ei2j0zVI06rQY3Xg4PlW0eUQ0SAxjBCFCfews6IwHnb2dZIkYc5ITmMlCnUMI0Rh4nid63iGidk6wZUElnsa667KRsGVENFgMYwQhYnjda4znMZnRVYYmVGQDHnvKb61rV2iyyGiQWAYIQoDFpsDlfoOAMCECAsjuugoTO7dPcSlGqLQxDBCFAbONHTAYned1JudEC26nIC7slTDMEIUihhGiMKAu19kfJYWkhQZzatXczexlp1rhtXuEFwNEXmLYYQoDBy/3BtGMiNricZtbIYWibFKmCx2z+A3IgodDCNEYeBYhDavuslkEmYWJAMAPj/LpRqiUMMwQhTirHYHTtVHdhgBgFmFrjCy52yz4EqIyFsMI0QhrqqxExabAxqVAsMTY0SXI8ysQlffyFeX2tHeZRFcDRF5g2GEKMS5m1fHZmojZvLqtaTr1BiZFgenE9hX1SK6HCLyAsMIUYhzh5FImy9yLTMLXFdH2DdCFFoYRohC3PHL7BdxmzXS3cTaDKfTKbgaIhoohhGiEGZ3OHGSYcRjal4ilHIZ6tq7cb7ZJLocIhoghhGiEFbd1Iluqx0xSjnykmNFlyNcjFKBm3ITALiujhBRaGAYIQphx3r7RcZlaiGP4ObVq7l31bBvhCh0MIwQhTD3Sb3jInTy6rW4542UnWuBxcbR8EShgGGEKIRxJ803jc3QIskzGr5NdDlENAAMI0QhyuFw4oT7TBqGEQ+ZTMLMwiu7aogo+DGMEIWo8y0mmCx2qKNkGJHC5tWrsW+EKLQwjBCFKPcSzZgMLRRyfitfzX1o3ld1BrSZOBqeKNjxJxhRiGK/SP/6jIY/x6UaomDHMEIUotw7acZzJ801uUfD76tiGCEKdgwjRCHI6bzSvDouSyu4muDk3uK7l2GEKOgxjBCFoLr2bhh7bIiSSyhM1YguJyjdnJeIKLmE2tZuXGzhaHiiYMYwQhSCTtV3AABGpMRBqeC38bXEqhSYNIyj4YlCAX+KEYWg0/WufpGxGVyiuR73rhr2jRAFN4YRohB0Su8KI6MzuERzPe7hZ/vPtcDucAquhoj6wzBCFILcyzRjeGXkuiZm6aBRK2Dotnq2QhNR8GEYIQoxXRYbLvQ2ZDKMXJ9CLkNpfhIA7qohCmYMI0QhplLfAacTSNGokBynEl1O0JvlOaeGo+GJghXDCFGIcS/RjE5nv8hAzOhtYi2/2I4ui01wNUR0LQwjRCHmFHfSeCUvORZZ8dGw2B04eL5VdDlEdA0MI0Qhxh1G2C8yMJIkcYsvUZBjGCEKIQ6HE6f13EnjrRmevhGGEaJgxDBCFELq2rvRabZBKZchPyVWdDkhY8YI146a0/oONHWYBVdDRF/HMEIUQk72LtEUpMYhSs5v34FKilN5emz2n+PVEaJgw59mRCGE/SKDN4tLNURBi2GEKIRcCSPc1ust92j4fVXNcDo5Gp4omDCMEIUQd/Mqt/V6b0puIpQKGeoNPTjXZBJdDhFdhWGEKER0mm242NIFABjNMOI1dZQcU3ITAHCLL1GwYRghChGVvSf1pmlVSIxVCq4mNLmnsbJvhCi4MIwQhYiTPKl3yGYVpAAADlS3wGZ3CK6GiNwYRohCBHfSDN3YTC3iY6LQabbhy0vtosshol4MI0Qh4nRvGOEBeYMnl0mYMYJLNUTBhmGEKARcPQaeO2mGZgbPqSEKOgwjRCGgprULXRY7lAoZ8pI5Bn4o3MPPjta0o9NsE1wNEQEMI0Qhwd0vMipNAwXHwA9JTmIMhifFwOZw4ovqFtHlEBEYRohCgnuJhv0ivsEtvkTBhWGEKARU9oaRUQwjPjGLfSNEQYVhhCgEVDa4r4ywedUXSkckQZKAs42d0Bt6RJdDFPEYRoiCXLfFjgstrrNUeGXEN+JjlJiYpQMA7OXVESLhGEaIgtzZxg44nUBirBLJcRwD7yvc4ksUPBhGiIKcp18kTQNJkgRXEz5m9m7x3VvVDKfTKbgaosjGMEIU5Ni86h8lwxOgjpKhqcPs6ckhIjG8DiN79uzB3XffjczMTEiShI0bN1738bt27YIkSd+46fX6wdZMFFGuNK8yjPiSSiHHzXlJAIC93OJLJJTXYcRkMqGoqAhr1qzx6nmVlZWor6/33FJTU719aaKIdJpXRvxmFueNEAUFhbdPWLRoERYtWuT1C6WmpiI+Pt7r5xFFslaTBU0dZgDAyDSGEV+bNTIZ+BT44nwLzDY7VAq56JKIIlLAekaKi4uRkZGB2267Dfv27bvuY81mM4xGY58bUSRy94vkJEYjVuX1/x3oBkalaZCiUaHH6sCRC22iyyGKWH4PIxkZGVi7di0++ugjfPTRR8jJycHcuXNRXl7e73NWr14NnU7nueXk5Pi7TKKgVKl3n0nDYWf+IEnSlaUabvElEsbvYWTUqFF4/PHHUVJSgunTp+Ott97C9OnT8bvf/a7f56xatQoGg8Fzq62t9XeZREGJzav+597i+/nZJsGVEEUuIdd9b775Zuzdu7ff96tUKqhUqgBWRBSc2LzqfzN7r4ycuGxES6cZSXH82UMUaELmjFRUVCAjI0PESxOFDIfDiTM8rdfvUrVqjE7XwOkE9p1rEV0OUUTy+spIZ2cnqqqqPG+fP38eFRUVSExMxLBhw7Bq1SrU1dXhz3/+MwDg5ZdfRl5eHsaNG4eenh68+eab2LFjBz777DPffRZEYaiuvRsmix1Rcgm5ybGiywlrMwuScVrfgb1nm/CtokzR5RBFHK/DyOHDhzFv3jzP2ytXrgQAPPjgg1i3bh3q6+tRU1Pjeb/FYsFPf/pT1NXVISYmBhMnTsS2bdv6fAwi+ib3TpoRKXGIknNYsj/NGpmCN/eex96zrtHwHLtPFFheh5G5c+de9xyHdevW9Xn7mWeewTPPPON1YUSRjs2rgXNzbiKUchkuG3pwrsmEgtQ40SURRRT+d4soSF1pXuW2Xn+LVsoxJS8BALCXu2qIAo5hhChIuWeM8MpIYMwsSAHA0fBEIjCMEAUhi82B6iYTAGAkw0hAzOqdN3KgugUWm0NwNUSRhWGEKAhVN3fC5nBCo1YgU6cWXU5EGJuhRVKsEiaLHUdrOBqeKJAYRoiCkHsnzag0DXd2BIhMJmF67wC0vRwNTxRQDCNEQYiTV8VwL9XsYd8IUUAxjBAFoUpOXhVidqGrifWrS+1oM1kEV0MUORhGiIJQJbf1CpGuU2NkWhycTi7VEAUSwwhRkOnosaKuvRuAq2eEAmvOSNfVkd1nOG+EKFAYRoiCzJmGTgBAulYNXUyU4Goiz+yR7nkjTdedNk1EvsMwQhRkzvSOged8ETGm5CZCHSVDg9HsGclPRP7FMEIUZK5s6+X5KCKoo+SYlp8EANjDpRqigGAYIQoybF4Vz72rhn0jRIHBMEIUZNzLNGxeFcfdN3LofBu6LDbB1RCFP4YRoiDS3GlGi8kCSQKPsRdoREossuKjYbE78EV1q+hyiMIewwhREHEv0eQmxSJaKRdcTeSSJMlzdYRLNUT+xzBCFETcYWQkm1eFmzOydzQ8wwiR3zGMEAUR9osEj+kFyZDLJFQ3m1Db2iW6HKKwxjBCFETcB+Rxxoh4WnUUJg+LBwDsOcurI0T+xDBCFCQcDifONvCAvGDi2eJbyTBC5E8MI0RBoq69GyaLHUq5DMOTYkWXQ7iyxXf/uRZY7Q7B1RCFL4YRoiDhbl7NT4lFlJzfmsFgQpYOibFKdJptKL/YJrocorDFn3hEQaKSSzRBRyaTMKvQtauGW3yJ/IdhhChI8IC84DRvVCoAYCf7Roj8hmGEKEhcOSCPYSSYzB6ZAkkCTtUboTf0iC6HKCwxjBAFAavdgXNNnQCAUbwyElQSY5UozokHAOyqbBRbDFGYYhghCgIXmk2w2p2IVcqRFR8tuhz6GvdSzY7TDCNE/sAwQhQEKq/qF5EkSXA19HXuMLKvqhlmm11wNUThh2GEKAi4+0W4kyY4jcvUIjlOBZPFjsMXuMWXyNcYRoiCwJUD8hhGgpFMJmHuKNcAtJ1cqiHyOYYRoiDAA/KC35UtvgwjRL7GMEIkWJfFhou9p8JyxkjwmlnoOsX3XJMJNS08xZfIlxhGiASrauyE0wkkxymRHKcSXQ71QxcdhZLhCQCAXWd4dYTIlxhGiARjv0jo8CzVsG+EyKcYRogEYxgJHfNGXznFt8fKLb5EvsIwQiTY6d4wMiaDYSTYjUrTIEOnhtnmQFl1i+hyiMIGwwiRYO4wMipdK7gSuhFJkjC3d6lmF5dqiHyGYYRIoJZOM5o7zZAkYGRanOhyaADm9c4b2X66EU6nU3A1ROGBYYRIIHe/yLDEGMQoFYKroYGYWZgMpUKGS23dONPQKbocorDAMEIkkGeJhs2rISNGqcCMEUkAgG2nGgRXQxQeGEaIBPKcSZPBfpFQMn9sGgCGESJfYRghEui03giAB+SFmltHu8JIRW07mjrMgqshCn0MI0SCOBxOT8/BKIaRkJKuU2NClg5OJwegEfkCwwiRIDWtXei22qFSyJCbFCu6HPLS/DGuqyNbuVRDNGQMI0SCuJtXC9PiIJdJgqshb80f65o38vnZJk5jJRoihhEiQSo9O2nYvBqKxmZokalTo8fqwP5zzaLLIQppDCNEglQ2uJpXOQY+NEmShFvdSzUn2TdCNBQMI0SCnK53j4FnGAlV7i2+2081wOHgNFaiwWIYIRKgx2rHhRYTAIaRUDYtPxGxSjkaO8w4ftkguhyikMUwQiTA2YZOOJxAYqwSKXEq0eXQIKkUcswe6TqrZttJ7qohGiyGESIB3MPORqVpIEncSRPK3Ft8t51i3wjRYDGMEAlwZQw8l2hC3bzRqZBJwMl6I+rau0WXQxSSGEaIBKhs6A0j7BcJeYmxSpQMTwAAbD2hF1wNUWhiGCES4JRnJw1njISDhePSAQBbTrBvhGgwGEaIAqyl04zmTjMkCRiZFie6HPIBdxj54nwLWjp5cB6RtxhGiALM3S8yLDEGMUqF4GrIF3ISYzA+SwuHE9jGs2qIvMYwQhRg7jNp2C8SXm7vvTqy+Tj7Roi85XUY2bNnD+6++25kZmZCkiRs3Ljxhs/ZtWsXJk+eDJVKhYKCAqxbt24QpRKFB8+ZNOwXCSu3j3eFkX1VLTD2WAVXQxRavA4jJpMJRUVFWLNmzYAef/78edx5552YN28eKioq8PTTT+PRRx/Fli1bvC6WKByc5k6asFSQqsGIlFhY7A7sPM2ZI0Te8HrBetGiRVi0aNGAH7927Vrk5eXhpZdeAgCMGTMGe/fuxe9+9zssXLjQ25cnCml2hxNn9DyTJlzdPj4da3aew5YTetxTnCW6HKKQ4feekbKyMsyfP7/PfQsXLkRZWZm/X5oo6FxsMaHbaoc6SobcpFjR5ZCPLRqfAQDYeboJ3Ra74GqIQoffw4her0daWlqf+9LS0mA0GtHdfe1phWazGUajsc+NKBycrHf9Wx6droVcxjHw4WZcphZZ8dHottqx52yT6HKIQkZQ7qZZvXo1dDqd55aTkyO6JCKfONUbRsZksHk1HEmS5Glk3cJdNUQD5vcwkp6ejoaGvvvuGxoaoNVqER0dfc3nrFq1CgaDwXOrra31d5lEAXHysiuMjM1kGAlX7jCy7VQDLDaH4GqIQoPfw0hpaSm2b9/e576tW7eitLS03+eoVCpotdo+N6Jw4B4DP5YH5IWtycMSkByngrHHhgPVLaLLIQoJXoeRzs5OVFRUoKKiAoBr625FRQVqamoAuK5qLF261PP4H/7wh6iursYzzzyD06dP49VXX8X777+Pn/zkJ775DIhCRKvJAr2xBwBnjIQzuUzCwnGuPrnNPDiPaEC8DiOHDx/GpEmTMGnSJADAypUrMWnSJDz77LMAgPr6ek8wAYC8vDz8/e9/x9atW1FUVISXXnoJb775Jrf1UsRx94vkJsUgTsUx8OHs6r4Rm51LNUQ34vVPxLlz58LpdPb7/mtNV507dy6OHj3q7UsRhRU2r0aOaflJSIiJQovJggPVrZhZmCy6JKKgFpS7aYjCkad5lWEk7EXJZVg0wTVz5G9fXhZcDVHwYxghCpCTvDISUe6emAnA1TfCXTVE18cwQhQAZpsdVY2dALitN1LcnJeIFI0Khm4r9lZxABrR9TCMEAVAVWMnbA4ndNFRyNCpRZdDASCXSbizd6lm05f1gqshCm4MI0QBcHW/iCRxDHykuLvItVTz2ckG9Fh5Vg1RfxhGiALAPeyM/SKRZfKweGTFR6PTbMOuykbR5RAFLYYRogA4WW8AwH6RSCNJEu6a2Lur5isu1RD1h2GEyM+cTudVV0Y4Bj7SuJdqtp9qgMlsE1wNUXBiGCHys8uGHhi6rVDIJBSkxokuhwJsXKYWuUkx6LE6sO1Uw42fQBSBGEaI/OxUb/NqQWocVAq54Goo0CRJ8lwd2cSlGqJrYhgh8jP3sDNOXo1cd/UOQNtd2QRDt1VwNUTBh2GEyM/cZ9KweTVyjUrXYGRaHCx2B7bwJF+ib2AYIfIzHpBHAHBPcRYA4OPyS4IrIQo+DCNEftRptuFCSxcAhpFIt3hSFiQJOFDdikttXaLLIQoqDCNEflSpd10VSdeqkRirFFwNiZQVH43S/CQAwMajdYKrIQouDCNEfuQZA89+EQJw7+RsAMDH5XVwOp2CqyEKHgwjRH50rK538iqXaAjA7ePTER0lR3WzCUdr20WXQxQ0GEaI/OhYnevKyIRsneBKKBjEqRS4fXw6ADayEl2NYYTIT3qsdpxtcI2Bn5DFMEIu3+5dqvnbl/Uw23iSLxHAMELkN6fqjbA5nEiOUyJDpxZdDgWJ0hFJSNeqYei2YscpnuRLBDCMEPnN8d5+kfFZOkiSJLgaChZymYTFk1wzRz4q564aIoBhhMhvvrrkCiMTuURDX3PvZFcY2VXZiJZOs+BqiMRjGCHyk2NXXRkhutrINA0mZOlgczjxty8viy6HSDiGESI/6LHacbaxEwB30tC1ua+OfMhdNUQMI0T+cLLeCLvDieQ4FdK1bF6lb/pWUSai5BKO1xk9/UVEkYphhMgP3L9cJmRp2bxK15QUp8LCca6ZI385WCO4GiKxGEaI/MDdvMr5InQ9/3zzMADAJxWX0WWxCa6GSByGESI/8FwZyY4XWwgFtWn5SchNikGn2YZNX9aLLodIGIYRIh/rtthxhpNXaQBkMgnf7b06sp5LNRTBGEaIfOxkvREOJ5CiUSFNqxJdDgW5+0qyESWXUFHb7jnlmSjSMIwQ+diV5lVOXqUbS45TYcFYVyPru4d4dYQiE8MIkY+5m1c57IwG6oHepZoNR+vQbeHheRR5GEaIfMx9ZYRj4Gmgpo9IwrDEGHT02PD3Y2xkpcjDMELkQ10WG8429javcvIqDZCrkTUHAGeOUGRiGCHyoVN9mlc5eZUG7r6SbChkEo5cbEOlvkN0OUQBxTBC5EM8qZcGK1Wjxm1j0wAAfy67ILYYogBjGCHyIZ7US0OxtDQXAPBxeR0MXVaxxRAFEMMIkQ95mlfZL0KDMC0/EaPTNei22rnNlyIKwwiRj3T0WFHV2AmAk1dpcCRJwsMz8gAAfy67CJvdIbgiosBgGCHykS9rDXA4gaz4aKSyeZUG6VvFmUiMVaKuvRvbTjWILocoIBhGiHykvKYNAFAyPEFwJRTK1FFyz2m+b+27ILYYogBhGCHyEXcYmTwsXmwhFPK+P204FDIJB8+34sRlg+hyiPyOYYTIBxwOJ8ov9oYRXhmhIUrXqbFoQgYA4G1eHaEIwDBC5APVzZ0w9tigjpJhTIZWdDkUBpbNyAUA/LXiMpo7zWKLIfIzhhEiHzjSe1VkYnY8ouT8tqKhmzwsAUU58bDYHVj/Bbf5UnjjT00iHyi/2A6AzavkWw/3Xh35c9lF9Fh5mi+FL4YRIh+40rzKMEK+s2h8BjJ1ajR3mvHhkUuiyyHyG4YRoiEydFlxtnfYGXfSkC8pFTI8NjsfAPD6nnMcgkZhi2GEaIiO1rquiuQmxSApTiW4Ggo3350yDImxStS2duPvx+pFl0PkFwwjREPELb3kT9FKuad35NWd5+BwOMUWROQHDCNEQ1Re0w6A/SLkPz8ozUWcSoHKhg7sON0ouhwin2MYIRoCu8OJitp2ANxJQ/6ji47C96cNBwC8uqsKTievjlB4YRghGoIzDR3oNNsQp1JgZJpGdDkUxh6emQulQobymnZ8cb5VdDlEPsUwQjQE7i29RTk6yGWS4GoonKVq1PjOTdkAgDU7qwRXQ+RbDCNEQ+CevFrCfhEKgMdnj4BcJuHzs804dokH6FH4YBghGoKjvc2rk9gvQgGQkxiDe4oyAQC/23ZGcDVEvsMwQjRIrSYLzjebAACTcxhGKDB+fGsh5DIJO0434vAF9o5QeGAYIRok93yRgtQ46GKiBFdDkSI3OdbTO/LilkrurKGwMKgwsmbNGuTm5kKtVmPq1Kk4ePBgv49dt24dJEnqc1Or1YMumChYHLro+l8pR8BToD15SyGUChm+ON+KvVXNosshGjKvw8h7772HlStX4rnnnkN5eTmKioqwcOFCNDb2P4hHq9Wivr7ec7t48eKQiiYKBmXnWgAApSOSBFdCkSYzPhrfn+qaO8KrIxQOvA4jv/3tb/HYY49h2bJlGDt2LNauXYuYmBi89dZb/T5HkiSkp6d7bmlpaUMqmkg0Q5cVx+pcuxmmj0gWXA1Foh/NG4EYpRxfXTLgs5MNosshGhKvwojFYsGRI0cwf/78Kx9AJsP8+fNRVlbW7/M6OzsxfPhw5OTk4J577sGJEyeu+zpmsxlGo7HPjSiYHDjfAqcTGJESizQtlx0p8JLjVHh4Rh4A4KXPKmHnmTUUwrwKI83NzbDb7d+4spGWlga9Xn/N54waNQpvvfUWPvnkE7zzzjtwOByYPn06Ll261O/rrF69GjqdznPLycnxpkwiv3Mv0cwo4FUREuex2fnQqhU409CJv315WXQ5RIPm9900paWlWLp0KYqLizFnzhx8/PHHSElJweuvv97vc1atWgWDweC51dbW+rtMIq/s620anM5+ERJIFx2Fx+eMAAC8tLUSZptdcEVEg+NVGElOToZcLkdDQ9/1yYaGBqSnpw/oY0RFRWHSpEmoqup/nLFKpYJWq+1zIwoWjR09ONvYCUkCpuUzjJBYy2bkIlWjQm1rN97ae0F0OUSD4lUYUSqVKCkpwfbt2z33ORwObN++HaWlpQP6GHa7HceOHUNGRoZ3lRIFCfcSzbhMLeJjlIKroUgXo1TgX28fDQB4ZcdZNHb0CK6IyHteL9OsXLkSf/zjH/GnP/0Jp06dwhNPPAGTyYRly5YBAJYuXYpVq1Z5Hv/LX/4Sn332Gaqrq1FeXo7vf//7uHjxIh599FHffRZEAbS/yhVGuIuGgsU/TcpCUU48TBY7XtxcKbocIq8pvH3CkiVL0NTUhGeffRZ6vR7FxcXYvHmzp6m1pqYGMtmVjNPW1obHHnsMer0eCQkJKCkpwf79+zF27FjffRZEAbS/2tUvwvkiFCxkMgnP3jUW335tPz4sv4QflA7HxOx40WURDZjkDIFpOUajETqdDgaDgf0jJFRtaxdm/Z+dUMgkfPncAsSqvM7zRH7zk/cqsOFoHW4anoAPflgKSZJEl0QRbqC/v3k2DZEX9p9zXRUpzolnEKGg86+3j0Z0lByHL7bhb1/Viy6HaMAYRoi8sP+cu1+ESzQUfNJ1avxormur7+pPT6Hbwq2+FBoYRogGyOl0XgkjHHZGQeqx2fnIio9GvaEHf9hxVnQ5RAPCMEI0QFWNnWjqMEOlkGEST+qlIKWOkuPZu10bBN7YU42Tl3mcBgU/hhGiAXJPXZ2SmwiVQi64GqL+LRyXjtvHpcPmcOLnH3/Fc2so6DGMEA3QlSUa9otQ8HvhnnHQqBX46pIBb+87L7ocoutiGCEaAJvdgQPVHHZGoSNNq8Yv7hgDAHjpszOobe0SXBFR/xhGiAbg0IU2GHtsSIiJwvhMzrqh0LDkphxMzUtEt9WOf9t4HCEwVooiFMMI0QB8dlIPALh1TBoUcn7bUGiQySSsvncClAoZ9pxpwsaKOtElEV0Tf6oS3YDT6cTWk66Tqm8bmya4GiLv5KfE4albCwEAL/ztJPQGHqRHwYdhhOgGTus7cKmtGyqFDLMK2S9CoedfZudjfJYW7V1W/PSDCji4u4aCDMMI0Q18dsJ1VWRWYQpilBwBT6EnSi7D7787CdFRcuyrasGbe6tFl0TUB8MI0Q1sPeXqF1nAJRoKYSNS4jzD0F7cUonjdQbBFRFdwTBCdB117d04XmeETAJuHZMquhyiIfnulBwsHJcGq92JH797FF0Wm+iSiAAwjBBd17bextWS4QlIilMJroZoaCRJwq/vnYg0rQrVTSb856ZToksiAsAwQnRd3EVD4SYhVonffqcYAPCXgzX49Fi92IKIwDBC1C9Dt9UzdfW2semCqyHynRkFyXh8Tj4A4GcffIkzDR2CK6JIxzBC1I9dlY2wOZwoTI1DXnKs6HKIfOr/WzAKpflJ6LLY8fj/HIGh2yq6JIpgDCNE/XBv6V0wjks0FH4Uchle+edJyIqPxvlmE55+9yjnj5AwDCNE12C22bGrshEAl2gofCXFqfD6D0qgUsiws7IJv9t2RnRJFKEYRoiuoexcC0wWO1I1KkzM0okuh8hvxmfpsPreCQCAP+yowubjesEVUSRiGCG6hr9+eRmAaxeNTCYJrobIv+6dnI1lM3IBACvfr8CXte1C66HIwzBC9DUdPVbPdsd7J2cLroYoMH5xxxjMKkxGl8WOh9cdwoVmk+iSKIIwjBB9zaav6tFjdaAgNQ6Th8WLLocoIKLkMrz2/RKMy9SixWTB0rcOoqnDLLosihAMI0Rf896hWgDAd27KhiRxiYYiR5xKgbeXTUFOYjRqWrvw8LpD6DRzZDz5H8MI0VXONHSgorYdCpmEf5rEJRqKPKkaNf788FQkxipxrM6AJ945AovNIbosCnMMI0RXeb/3qsgto1ORouFZNBSZ8pJj8dZDUxAdJcfnZ5vx5F/KGUjIrxhGiHpZbA5sOFoHAFgyJUdwNURiFefEY+0PSqCUy7DlRANWrGcgIf9hGCHqteN0A1pMFqRoVJgzMkV0OUTCzRmZgjeWlkCpkOGzkw340f+Ww2yziy6LwhDDCFGv9w9fAgB8e3I2FHJ+axABwNxRqXhz6U1QKWTYdqoBP3qHgYR8jz9xiQDoDT2e8e/fuYmNq0RXmz0yBf/94BSoFDJsP92If/nzEZi4y4Z8iGGECMBH5ZfgcAJTchOQnxInuhyioDOzMBlvPzQF6igZdp9pwnffOIDGjh7RZVGYYBihiOdwOPHBYfdsETauEvVnekEy1j82zbPt95/W7EdVY4fosigMMIxQxPv0eD0utHRBq1bgjgkZosshCmqThyXg4yemIzcpBnXt3bj31f34orpFdFkU4hhGKKI5HE781/azAIBHZuYjVqUQXBFR8MtNjsXHP5qBycPiYeyx4Qf/fRDv915dJBoMhhGKaP84rseZhk5o1Ao81HtqKRHdWGKsEusfm4bbx6XDYnfgmQ+/wqqPv0KPlTttyHsMIxSxrr4q8vCMPOiiowRXRBRa1FFyvPq9yfjpbSMhScBfDtbivrX7UdvaJbo0CjEMIxSxtpzQo7KhAxq1Ag/PzBNdDlFIkskkPHlrIf788M1IjFXieJ0Rd/7X59h+qkF0aRRCGEYoIjkcTvy+96rIMl4VIRqyWYUp2PTkTBTnuPpIHvnTYaz6+BhP/aUBYRihiPTZST1O6zugUSnwyAxeFSHyhcz4aLz/eCke6b3S+JeDNbj95T04wN02dAMMIxRxXFdFqgAAy2bkQhfDqyJEvqJUyPAfd43FXx6bhqz4aFxq68Z33ziAX/7tJLotbG6la2MYoYiz5YQep+qNiFOxV4TIX0pHJGHLT2bjgZtdgwTf2nce83+7G/84Vg+n0ym4Ogo2DCMUUQxdVjz31xMAgIdn5CI+Rim4IqLwFadSYPW9E/H2sinIio9GXXs3nvjfcix96yDONXWKLo+CCMMIRZQX/nYCjR1m5KfE4kfzCkSXQxQR5o1KxbaVc/DkLQVQymX4/Gwzbn95D/7/T0+hvcsiujwKAgwjFDG2nmzAx0frIJOA/3t/EdRRctElEUWMaKUcP10wCp/9ZDZuGZ0Kq92JN/ZUY9ZvduK/tp/lrpsIxzBCEaHNZMEvNhwDADw2Kx+ThyUIrogoMuUmx+Kth6bg7YemYHS6Bh1mG3679Qxm/5+dePPzaja5RijJGQKdREajETqdDgaDAVqtVnQ5FIKeevcoPqm4jBEpsfj7j2fxqghREHA4nPj7sXr8dusZnG82AQASYqLwg9JcPFg6HElxKsEV0lAN9Pc3wwiFvc3H9fjhO0cgk4CPfzQDxTnxoksioqvY7A58VH4Jf9hRhUtt3QAAlUKG+0qy8cjMPOSnxAmukAaLYYQIwLmmTty/tgytJguemDsC/3r7aNElEVE/bHYHNp/Q44091fjqksFz//QRSXjg5mFYMC4NKgWvaoYShhGKeJfaunD/2jLUG3owPkuLj56Yzh9kRCHA6XTiQHUr/vh5NXZWNsL9WyoxVon7SrLxT5OyMDpdA0mSxBZKN8QwQhGt0diD+18vw8WWLoxIicX7j5dy/ZkoBF1q68L7h2rx3uFaNBjNnvsLU+PwraJMfKs4E8OTYgVWSNfDMEIRq81kwZI3ynCmoRM5idH44PHpSNepRZdFRENgszuws7IJHxyuxa7KJljsDs/7xmdpMX9MGuaPScO4TC2vmAQRhhGKSMYeK77/5hf46pIBaVoVPnh8OoYlxYgui4h8yNBtxWcn9Pjrl5ex/1wL7I4rv8bStWrcMiYVswtTUJqfxLOnBGMYoYhz5GIrnn6vArWt3UiMVeK9f5mGwjSN6LKIyI+aO83YcboR20424POzzei2XplTIknA+EwdphckoTQ/CZOGJUAXzXASSAwjFDFsdgf+sKMKf9hxFg4nkJ0Qjdd/UIJxmTrRpRFRAPVY7SirbsGu043Yd64FVY19z7+RJGBkqgaThydg8rB4FOXEIz85Fgo553/6C8MIRYSLLSY8/V4Fjta0AwDunZSF5+8ZB62a//shinQNxh7sP9eMfVUtOHyhFRdaur7xGHWUDGMytBifqcO4TC0K0zQYmRYHDX+G+ATDCIW103oj/rjnPP76ZR2sdic0agV+tXg87inOEl0aEQWp5k4zjlxsQ/nFNpTXtOHEZSO6+hk/n6lTozBNg/yUWOQnxyI3ORZ5ybHI1EVDJmOD7ED5NYysWbMGL774IvR6PYqKivCHP/wBN998c7+P/+CDD/Af//EfuHDhAgoLC/Gb3/wGd9xxx4Bfj2GEAMDucGJfVTP++Hk1Pj/b7Ll/ZkEyfv3tCchOYKMqEQ2cw+HE+RYTjtcZcLzOgNP6Dpxp6OizhfjrlHIZMuPVyEmMQXZCNLITYpAZr0a6NhrpOjXStWpEKznPyM1vYeS9997D0qVLsXbtWkydOhUvv/wyPvjgA1RWViI1NfUbj9+/fz9mz56N1atX46677sL69evxm9/8BuXl5Rg/frxPPxkKP7WtXdhb1Yy9Z5ux71wz2rusAACZBCyakIHHZuVzvDsR+ZShy4ozja5gcqHZhPO9t5rWLljtN/6VqYuOQopGhZQ4letPjQqJsUokxSpdf8YpkRCjRHyMElq1Iqx7VvwWRqZOnYopU6bglVdeAQA4HA7k5OTgySefxM9//vNvPH7JkiUwmUzYtGmT575p06ahuLgYa9eu9eknQ6HF6XSi22pHq8mCNpMVTZ09ON/chfPNnTjfbEJ1kwn1hp4+z9GoFPh273kVOYm8EkJEgWOzO6A39uBSWzdqW7twqa0bl9q6oTd2o97Qg/r2nj67eQZKo1YgPiYKWnUUNGoFNOorf49TKRCrUiBOJUecWoEYpQIxSvlVf8oRrZQjOsp1C7ZgM9Df3wpvPqjFYsGRI0ewatUqz30ymQzz589HWVnZNZ9TVlaGlStX9rlv4cKF2LhxY7+vYzabYTZfuUxmNBq9KXPAXvqsEtW9J0UGE5GrkTcaFnR1dnVe9RcnnHA4AIfTCSdclz9tDiccTidsdidsDgd6rA70WO3ottrRY3XA2GOFxea41st4KGQSJg2Lx8yCFMwsTEJRdnzQfbMRUWRQyGXITohBdkIMpuUnfeP9TqcTxm4bGjt60NRhRlOnGU0dZjR2mNHSaUFblwUtJgtaTWa0mazoNNsAAB09NnT02AB0D7nGKLkEtUIOVZQc6igZVAoZ1FFyKBWuvysV8t4/ZVDKe28KGaLkMiybkSvsP3lehZHm5mbY7XakpaX1uT8tLQ2nT5++5nP0ev01H6/X6/t9ndWrV+OFF17wprRB2VfVjPLeXRgkjlIuQ2Lv5cvhSTHIT4lFXnIc8pJjMSpdgziVV/9MiYiEkCQJupgo6GKiBjTjyGp3wNhtRXu3Fe1dVhh7rOjoscHYbe0NKFaYzDZ0mu29f9rQZbGhy2Lvvbn+3m21e87vsdqdsNpt6OgNOt64qygjNMJIoKxatarP1RSj0YicnByfv86js/LR1NG3USkENhcNii8/q6uvnbivpMgkAJKE3j+gkEmQy2S9f0pQyCSoo+RQRblSulohh0atQGKsEjFKOcc3E1HEiZLLkBSnGvK5WU6nE2ab68pzl8Xu+XuP9crfLTYHzDbHVX/aYbU7YbG73rbaHcgQeGyGV2EkOTkZcrkcDQ0Nfe5vaGhAenr6NZ+Tnp7u1eMBQKVSQaXy/6Fmd0zI8PtrEBER+ZMkuf6zp46SIz5EW+m8WnxXKpUoKSnB9u3bPfc5HA5s374dpaWl13xOaWlpn8cDwNatW/t9PBEREUUWr5dpVq5ciQcffBA33XQTbr75Zrz88sswmUxYtmwZAGDp0qXIysrC6tWrAQBPPfUU5syZg5deegl33nkn3n33XRw+fBhvvPGGbz8TIiIiCkleh5ElS5agqakJzz77LPR6PYqLi7F582ZPk2pNTQ1ksisXXKZPn47169fj3//93/GLX/wChYWF2Lhx44BnjBAREVF44zh4IiIi8ouB/v7mwAYiIiISimGEiIiIhGIYISIiIqEYRoiIiEgohhEiIiISimGEiIiIhGIYISIiIqEYRoiIiEgohhEiIiISyutx8CK4h8QajUbBlRAREdFAuX9v32jYe0iEkY6ODgBATk6O4EqIiIjIWx0dHdDpdP2+PyTOpnE4HLh8+TI0Gg0kSfLZxzUajcjJyUFtbS3PvPEjfp0Dh1/rwODXOTD4dQ4Mf36dnU4nOjo6kJmZ2ecQ3a8LiSsjMpkM2dnZfvv4Wq2W/9ADgF/nwOHXOjD4dQ4Mfp0Dw19f5+tdEXFjAysREREJxTBCREREQkV0GFGpVHjuueegUqlElxLW+HUOHH6tA4Nf58Dg1zkwguHrHBINrERERBS+IvrKCBEREYnHMEJERERCMYwQERGRUAwjREREJFREh5E1a9YgNzcXarUaU6dOxcGDB0WXFHb27NmDu+++G5mZmZAkCRs3bhRdUthZvXo1pkyZAo1Gg9TUVCxevBiVlZWiywpLr732GiZOnOgZDlVaWop//OMfossKa7/+9a8hSRKefvpp0aWEneeffx6SJPW5jR49WkgtERtG3nvvPaxcuRLPPfccysvLUVRUhIULF6KxsVF0aWHFZDKhqKgIa9asEV1K2Nq9ezeWL1+OAwcOYOvWrbBarViwYAFMJpPo0sJOdnY2fv3rX+PIkSM4fPgwbrnlFtxzzz04ceKE6NLC0qFDh/D6669j4sSJoksJW+PGjUN9fb3ntnfvXiF1ROzW3qlTp2LKlCl45ZVXALjOv8nJycGTTz6Jn//854KrC0+SJGHDhg1YvHix6FLCWlNTE1JTU7F7927Mnj1bdDlhLzExES+++CIeeeQR0aWElc7OTkyePBmvvvoqfvWrX6G4uBgvv/yy6LLCyvPPP4+NGzeioqJCdCmReWXEYrHgyJEjmD9/vuc+mUyG+fPno6ysTGBlRENnMBgAuH5Jkv/Y7Xa8++67MJlMKC0tFV1O2Fm+fDnuvPPOPj+nyffOnj2LzMxM5Ofn43vf+x5qamqE1BESB+X5WnNzM+x2O9LS0vrcn5aWhtOnTwuqimjoHA4Hnn76acyYMQPjx48XXU5YOnbsGEpLS9HT04O4uDhs2LABY8eOFV1WWHn33XdRXl6OQ4cOiS4lrE2dOhXr1q3DqFGjUF9fjxdeeAGzZs3C8ePHodFoAlpLRIYRonC1fPlyHD9+XNi6byQYNWoUKioqYDAY8OGHH+LBBx/E7t27GUh8pLa2Fk899RS2bt0KtVotupywtmjRIs/fJ06ciKlTp2L48OF4//33A77sGJFhJDk5GXK5HA0NDX3ub2hoQHp6uqCqiIZmxYoV2LRpE/bs2YPs7GzR5YQtpVKJgoICAEBJSQkOHTqE3//+93j99dcFVxYejhw5gsbGRkyePNlzn91ux549e/DKK6/AbDZDLpcLrDB8xcfHY+TIkaiqqgr4a0dkz4hSqURJSQm2b9/uuc/hcGD79u1c+6WQ43Q6sWLFCmzYsAE7duxAXl6e6JIiisPhgNlsFl1G2Lj11ltx7NgxVFRUeG433XQTvve976GiooJBxI86Oztx7tw5ZGRkBPy1I/LKCACsXLkSDz74IG666SbcfPPNePnll2EymbBs2TLRpYWVzs7OPin7/PnzqKioQGJiIoYNGyawsvCxfPlyrF+/Hp988gk0Gg30ej0AQKfTITo6WnB14WXVqlVYtGgRhg0bho6ODqxfvx67du3Cli1bRJcWNjQazTf6nWJjY5GUlMQ+KB/72c9+hrvvvhvDhw/H5cuX8dxzz0Eul+OBBx4IeC0RG0aWLFmCpqYmPPvss9Dr9SguLsbmzZu/0dRKQ3P48GHMmzfP8/bKlSsBAA8++CDWrVsnqKrw8tprrwEA5s6d2+f+t99+Gw899FDgCwpjjY2NWLp0Kerr66HT6TBx4kRs2bIFt912m+jSiLx26dIlPPDAA2hpaUFKSgpmzpyJAwcOICUlJeC1ROycESIiIgoOEdkzQkRERMGDYYSIiIiEYhghIiIioRhGiIiISCiGESIiIhKKYYSIiIiEYhghIiIioRhGiIiISCiGESIiIhKKYYSIiIiEYhghIiIioRhGiIiISKj/B41nCXVheTdzAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "matplotlib.pyplot.plot(fx,fy)\n", "numpy.sum(fy)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" } }, "nbformat": 4, "nbformat_minor": 4 }