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The methodology for the simultaneous solution of ordinary differential equations and the associated
first-order parametric sensitivity equations is presented, and a detailed description of its implemen-
tation as a modification of a widely disseminated implicit ODE solver is given. The error control
strategy ensures that local error criteria are independently satisfied by both the model and sensitivity
solutions. The internal logic effectuated by this implementation is detailed. Numerical testing of the
algorithm is reported; results indicate that greater reliability and improved efficiency is offered over
other sensitivity analysis methods.

Categories and Subject Descriptors: G.1.7 [Numerical Analysis]: Ordinary Differential Equations—
LSODE, ODESSA; initial value problems; error analysis; stiff equations; 1.6.4 [Simulation and
Modeling]: Model Validation and Analysis; G.4 [Mathematics of Computing]: Mathematical
Software—efficiency

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Model error, model prediction uncertainty, parameter variation,
sensitivity analysis

1. INTRODUCTION

First-order sensitivity analysis involves examination of the effects of differential
variations in the fixed coefficients or boundary conditions (parameters) of a
mathematical model. The basic measures of sensitivity are the partial derivatives.
d(model responses)/d(model parameters), called the sensitivity coefficients of the
model. These coefficients may be useful in uncertainty analysis and reduction of
complex nonlinear models, examples being provided in the fields of chemical
kinetics [1, 8] and econometrics [5]. Sensitivity calculations may also be required
for gradient evaluation in optimizations [3], in experimental design and analysis
[10, 20], and in many phases of chemical process design [22]. In this paper we
address the calculation of sensitivity coefficients associated with systems of first-
order ordinary differential equations. The algorithm falls into a class of methods
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called explicit simultaneous methods, which have been shown to be very prom-
ising in terms of accuracy and efficiency [9]. The program ODESSA is a
modification of the initial value solver LSODE [13], and shares very similar
operational and portability features.

In the following section, a formal problem statement is given. This is followed
in Section 3 by a summary of previous methods providing a basis for the numerical
comparisons in Section 5. The current algorithm is described in Section 4.

In the accompanying paper [20], the ODESSA package is described in terms
of its standard usage and optional capabilities. A description of the essential
differences between ODESSA and LSODE are also provided to expedite famil-

iarization to ODESSA for experienced LSODE users.

2. PROBLEM STATEMENT

The ODESSA modification of the LSODE package provides the capability for
computing first-order sensitivity coefficients for systems of stiff or nonstiff
ordinary differential equations (ODEs) of the general form:

_%(&p)

y(t; p) a

= f(y, t; p), y(0) = y°, (2.1)

where y is an N-dimensional dependent-variable vector, or model solution vector,
ZO supplies the initial conditions, ¢t is the independent variable, and p is an
M-dimensional constant vector of (specified) model parameters. The governing
equations for the first-order sensitivity coefficients are derived by differentiation
of (2.1) with respect to the model parameters p, yielding

3(®)
Pp (2.2)

S2=1, if p;=y?, or 0, otherwise.
ij J i

S(t) = J(t)S(¢t) +

In (2.2), S(t) is the N X M sensitivity coefficient matrix S;; = dy;/dp;, J(t) is the
N X N Jacobian matrix J;; = df;/dy;, and df(t)/dp is an N X M matrix of partial
derivatives 3f;/dp;. The jth column in S(t), s;(¢), is the sensitivity solution vector
for the jth model parameter p;. Note that if p; represents an initial condition on
(2.1), then df /dp; = Q.

Solution of (2.1) and (2.2) proceeds jointly in the ODESSA package, with
information generated in the solution of (2.1) used in the solution of (2.2). The
exact sequence of operations and further details are described in Section 4.

3. REVIEW OF PREVIOUS WORK

The simplest conceptual route to calculating first-order sensitivity coefficients is
via a finite-difference approximation:

dy(t) . y(t; p + Ap;) — y(¢; p)
dp Ap;
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where Ap; is a finite perturbation in the jth element in p. This method suffers
from two drawbacks: the numerical values obtained may vary significantly with
is required. The former disadvantage may be overcome by integrating equations
(2.1) and (2.2) simultaneously with an appropriate differential equation solver.
For the full set of sensitivities, a combined 2N-dimensional system must be

solved M times. For some numerically stable systems, this dimensionality can
be halved by decoupling (2.1) and (2.2), first solving and storing the solution
to (2.1), and subsequently using this information to construct (i.e., interpolate)
J(t) and df(¢t)/dp for (2.2). The decoupled system requires the solution of
only N(M + 1) ODEs. These two algorithms have been referred to as direct
methods (DM) [86, 28].

For models in which M > N, it is often advantageous to use the Green’s
function method (GFM). The linear nature of (2.2) allows the construction of
the homogeneous solution to this set of nonhomogeneous differential equations
in the form of an n X n Green’s function matrix. First-order sensitivities may
then be expressed in integral rather than differential form. (The exact sequence
of operations and other details are given in {7] and [15].) Because numerical
quadrature is usually simpler than the solution of ODEs, the GFM is generally
more efficient than the DM, if M > N.

The majority of computing time for the GFM is expended in the solution of
the Green’s function matrix. By exploiting the linearity of this equation, the
analytically integrated Magnus (AIM) [16] modification of the GFM utilizes a
specialized technique, the piecewise Magnus method (PMM), for this calculation,
handling the problem as a matrix exponential rather than a succession of N,
N-vector ODEs (see [16] and [17] for details). The total effort in the PMM
solution of the Green’s function matrix is proportional to N3 By contrast, the
effort expended in this solution by application of vector-ODE techniques is
proportional to N*. The additional factor of N significantly affects the relative
efficiencies of the two approaches, favoring AIM for large problems.

The degree and complexity of the numerical manipulations and approximations
required by the AIM implementation have raised concerns over its reliability.
Recent research has focused on a class of algorithms designed to fully exploit the
similarities between the mathematical structure of the model and the sensitivity
equations in a more straightforward manner. Equations (2.1) and (2.2) have the
same Jacobian, a feature that can be directly exploited in the sensitivity calcu-
lation. By applying a backward differentiation formula (BDF) [12] to the solution
of (2.1) and (2.2), Lojek [24] showed that the model and sensitivity solution
vectors can be jointly calculated using the same step size and order of integration.
The method differs most fundamentally from the conventional DM in that the
sensitivity solution vectors are computed noniteratively and concurrent with the
solution of the model equations. Numerical results provided by Dunker [9]
demonstrate the improved efficiency and accuracy of this new method. It was
also discovered that Adams’ formulas [12] can also be used to derive an explicit
formula, enabling both stiff and nonstiff systems to be solved with a single
implementation [22]. This method has also been extended to systems of coupled
differential and algebraic equations [4, 23]. These earlier works provide the basis
and motivation for this paper and the ODESSA package.
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4. SOLUTION METHODOLOGY

The overall solution sequence for ODESSA given in Figure 1 is similar to a
previous simultaneous sensitivity analysis method [9]. Within a successful inte-
gration step, y(t) is first advanced from ¢,, to t,, followed by the propagation of

idanticral ot nAd A £ + +3 Thia A
S{t) using the identical step size and order of integration. This procedure is

repeated across each successful integration step. The code used for the prediction,
correction, and error control of the model solution vector y(t) is identical to that
in LSODE (however, mandated by the sensitivity calculation, the Jacobian is
never more than one step out of date). As detailed subsequently, the choice of
integration step size and order are based on the behavior of both model and
sensitivities solutions. As a background for the presentation of ODESSA,
Section 4.1 is a brief summary of LSODE. A description of the implementation
of ODESSA is contained in Section 4.2. Issues of solution stability and error
control are addressed in Section 4.3. Section 4.4 contains a flow diagram depicting
the sequence of calculations for the simultaneous integration of the model and
sensitivity equations.

4,1 The ODE Solution

The LSODE package uses variable-order, predictor-corrector formulas for the
integration of initial-value ODEs as described by (2.1). For stiff systems, Gear’s
backward differentiation formulas (BDFs) are used. Otherwise, Adams’ method
can be used. The particular method is selected by the user. The detailed mathe-
matical treatment of these methods in the solution of initial-value problems can
be found in several references [11, 12, 14]; no attempt is made here to reproduce
these works. It is important to note, however, that a single representation for
both Adams’ formulas and BDFs exists within LSODE. This is accomplished
through the use of Nordsieck arrays U [26], which store the solution history of
y(t) as vectors of scaled derivatives at the current time step n:

h? d’y, Rt d’“’zn}

Un [y" e oy g W d |

(4.1)

At issue are the relative convenience and efficiency of informationally equivalent
implementations. The Nordsieck arrays facilitate local error estimation and,
consequently, the simultaneous change of integration step size and order is easily
effected through their use. They also allow a more efficient prediction, denoted
by superscript (0), by use of the single equation:

UY = DU, (4.2)

where the matrix D) is the Pascal triangle matrix. Considerable savings in
computational effort may be achieved by carrying out the matrix multiplications
implied in (4.2) by successive additions as suggested by Gear [11], [14].

Using the Nordsieck representation also allows a single corrector formula to

be used:
U,=UY + lal, (4.3)

where [ is a normalized coefficient vector and superscript T denotes the transpose.
The vector [ is a function of the method and the integration order k. The
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Fig. 1. Solution procedure for simultaneous sensitivity analysis. (Adapted from [9].) Circled numbers
indicate sequence in which egs. (2.1) and (2.2) are solved.

accumulated corrections vector, a,, is defined at ¢, by

Xn = szO) + lO‘_ln’ (4-4)
hy» = hyy + an, (4.5)
hyy + @, = hf(ys) + lo@Gn, ta; D). (4.6)

The elements in g correspond to the scalar equations in y(t). Equations (4.4) and
(4.5) are the first and second scalar equations of (4.3), respectively. Substitution
of these equations into (2.1) yields (4.6), which represents the approximated
solution to the ODEs at the current step t,. In practice, the equalities in (4.6)
hold only within finite tolerances that define the residuals r of the system (as
functions of @,,):
r(as) = hf(y? + ban, t.) — (W9 + a.). 4.7)
LSODE uses successive substitution or a modified Newton scheme to effectively
satisfy the relations r < enas, Where en.x 1S @ maximum error vector calculable
from user-specified tolerances. (ODESSA uses the same Newton scheme but with
a Jacobian that is at most one step old.) Clearly, at the predicted conditions
(y?, 25,0), t.), the residuals are given by r(0).
“Upon convergence of (4.7), the accumulated correction vector, a., is used in
the estimation of the local truncation errors, ¢o, in y(¢) at the current integration
step. The error control strategy in LSODE sets the integration step size and
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order to satisfy the following inequality at each integration step:

1 XN (e’
~ (‘-""’A) = 1.0, (4.8)

where the subscrint i denotes the ith element of a vector. The ahove exnression

ACIT vid WS L LY LaTIA0WES iiT Juil 144 1 MUVY VApivosau

is the weighted root-mean-square norm of the error, subsequently denoted simply
as [leo/wo]l. Here, N equals the number of ODEs in (2.1), and «, is the
N-dimensional error weighting vector that is selected by the user to represent
relative and/or absolute error control.

T ar o
I

ne Sensitivities Soiution

The underlying idea of simultaneous methods can be illustrated by replacing the
derivatives in (2.2) by a difference approximation. Rearrangement of the resulting
expression yields an explicit formula for the solution of S(t) at ¢,. For example,
if the simple backward difference,

. §n - §n—1

S, = (4.9)

is used, (2.2) can be rearranged to yield
of
=[I — hd.]" [ a1 + h( ) ], (4.10)
81_) n

where h (=t, — t,—;) is the integration step size, and all other terms are as
previously defined in (2.2). Note that the required derivatives are evaluated at
the current integration step, t,, implying the solution of the model equations
prior to the evaluation of equation (4.10). In practice, the sensitivities are
calculated using the same integration step size (and integration order) as the
model solution. This is accomplished without introducing additional storage by
updating the sensitivities concurrently with the model solution. Also the coeffi-
cient matrix (I — hd,) is not inverted, but rather LU-decomposed. S, is
calculated by (repeated) back substitution (followed by forward substitution).

The algorithms in ODESSA are an extension of this approach. Instead of using
the first-order formula (4.9), ODESSA approximates the derivative using the
appropriate kth-order formula. (A detailed derivation using the original variable-
order BDFs and Adams’ formulas is presented in [23].) Integration step size and
order are selected to satisfy local error criteria, with a secondary constraint added
to secure the convergence of the corrector equations for y(t).

In ODESSA, as in LSODE, the integration formulas are represented in terms
of Nordsieck arrays, defined for each parameter of interest. Prediction and
correction are handled analogously to (4.2) and (4.3). The accumulated correction
is defined in an equivalent manner to g, for the model solution. Rearrangement
of the resulting residuals for the sensitivity equations results in an explicit formula
for the solution of s(¢) at ¢,.:

= [L — hlod )" (s%) = hlosS + hlodf./dp). (4.11)

The Jacobian in (4 11), J ., is (usually) evaluated at current solution conditions
Yn» tn. However, depending on the convergence of the model solution, J, may be
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evaluated at t, using the predicted values of y,. Numerical tests indicate that no
noticeable loss in accuracy results, and computational savings are realized with

vLiLEalllc Iusa 111 dutldiday 1eoil UL 1U11dl sdVvill 1% Lltdlls

fewer Jacobian evaluations and decompositions necessary to solve a problem.

4.3 Error Control

Errors associated with the sensitivity calculations are computed in the equivalent
manner to the errors associated with the model solution vector: Local errors are
assumed to be proportional to the difference between corrected and predicted
values. For a single parameter, p,:

e, x s, — s (4.12)

For the multiple parameter case, ODESSA controls the local errors according to
inequalities of the form:

lej/wil =10 (j=1,..., M), (4.13)

where the column vectors ¢; contain the estimated local errors for the correspond-
ing sensitivity solution vectors s;, and where w; are the vectors of weights selected
by the user to represent relative and/or absolute error control for the sensitivities
s,;(t). We refer to the implementation where the inequalities in (4.13) and (4.8)
are satisfied at every step in the integration as the mutually dependent error
control strategy [22].

There are several possible alternative approaches. The model error vector e,

can be augmented with the sensitivity error vectors ¢;, j = 1, ..., M, to form a
column vector E, to which the vector-norm inequality
IE/W]| < 1.0 (4.14)

is applied. This method is used in [4], which is a sequential sensitivity analysis
modification of the DASSL [27] solver. Although computational effort is largely
unaffected, numerical tests indicate that, at any given step, a majority of the
inequalities in (4.13) are satisfied, thereby compensating for larger errors with
respect to certain parameters in (4.14). This problem can be circumvented by
using the maximum norm in place of the weighted RMS norm; however this
yields unnecessarily stringent error control [12]. Another alternative, referred to
as fully-dependent error control [22], is to rely on the error control provided in
the solution of the model, as in [9]. This removes any direct control over errors
in the sensitivity solution, and provides no guarantee against accumulation of
errors in S(&).

In the mutually dependent implementation, the dynamic behavior of both the
model and the sensitivities are taken into account by applying an error test to
each solution vector y(t) and s;(t), j = 1, ..., M. This offers several advantages.
Foremost among these are that the inequalities in (4.13) are satisfied on every
step. This provides assurance that errors in the sensitivities are controlled.
Secondly, since solution propagation, error estimation, and error checking can
proceed independently for each solution vector, error test failures can be detected
sooner on a given step, saving the computational expenses of correction, error
estimation, and error checking associated with the solution vectors not yet
considered. On average this will save the expense of considering half of the
solution vectors on an integration step that is going to fail. If the error test fails
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for any vector ¢;, j = 1, ... M, the step is immediately repeated beginning
with the selection of a new step size, and possibly a new order of integration,
depending on the severity of the error violation. Additionally, we have found that
decreasing the tolerances on y(¢) is less effective in improving the accuracy of
S(t) than providing error control directly on S(¢). Lastly, error tolerances can
be specified independently on each solution vector, which may be useful in
reducing the number of integration steps required to solve a problem. ODESSA
stores the number of repeated integration steps attributable to any single solution
vector to assist in setting individual tolerances. Mutually dependent implemen-
tations offer the greatest reliability and, of these, the ODESSA implementation
is most reliable offering a higher degree of flexibility and (on average) greater
efficiency.

4.4 Calculational Sequence

A detail of the sequence of calculations within ODESSA is presented in
Figure 2. It should be immediately noticed that several nested loops exist with
the initial task of selecting the integration step size and integration order. At the
beginning of a problem, the order is set to one, and the initial step size is
calculated as a function of the error tolerances supplied and the initial output
time requested by the user. Optionally, the initial step size can be directly
supplied by the user.

After the integration step size and order have been selected, the model and
sensitivity solutions are predicted for at the next integration step using equation
{4.2) (and the analogous form for the sensitivities). In ODESSA, the prediction
step for both the model and sensitivities is carried out simultaneously. It is
conceivable that greater efficiency can be achieved if the prediction of the
sensitivities is performed after the model solution converges. This obviates the
need to retract the predicted sensitivities to their values before prediction if the
model solution fails to converge with the current step size. However, the savings
are not seen to be significant. Prediction (or retraction) is carried out by
successive additions (or subtractions), which is relatively inexpensive.

Only those components of the Nordsieck arrays contained in the residual (4.7),
namely, y@ and hy®, need be used in the model correction step. ODESSA
provides two options to calculate ag,: successive substitution and Newton’s
method. If a sensitivity analysis is being performed, Newton’s method must be
used. Application of Newton’s method to (4.7) yields the following iteration
formula:

(@ — @) = [L — hlod]'r(@t™). (4.15)

The superscripts (m + 1) and (m) refer to the iteration count. Comparing (4.15)
with (4.11) reveals that the iteration matrix in (4.15) is of the exact same form
as the coefficient matrix in (4.11). Since this matrix must be evaluated at least
once per step as required by (4.11), the iteration matrix in (4.15) is never more
than one step out of date, i.e., J, in (4.15) is generally J,—,. It sometimes happens,
however, that even at the previously corrected values (y,-i, t.—1), the iteration
matrix must be updated to converge the corrector at current conditions (y,, t.).
If this occurs, the Jacobian is evaluated at the current predicted conditions

( sz”, t,). If the corrector still fails to converge, the step size is reduced, the
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SELECT STEP SIZE
AND ORDER (4.16) ¢

v

PREDICT MODEL VALUES INCREMENT
(4.2) INTEGRATION
VARIABLE

!

MODEL
CONVERGENCE
2 (4.7)

REPEAT
STEP

NO

CALCULATE
SENSITIVITIES (4.11)

NO

CONSIDER
NEW

STEP SIZE
?

UPDATE NORDSIECK
ARRAYS (4.3)

Fig. 2. Calculational sequence of explicit simultaneous sensitivity analysis as implemented in
ODESSA. Relevant equations appear in parentheses.

predicted values are retracted, and the step is tried again, beginning with the
prediction of y(t) and S(t) using the now current step size. This involves a
rescaling of the Nordsieck arrays U and Z at the previous step ¢,-,. The maximum
number of iterations allowed in ODESSA, if a sensitivity analysis is being
performed, is four.

Following corrector convergence, the local error associated with y(t) is esti-
mated and the error check is made. If the inequality in (4.8) is satisfied, the
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sensitivity calculations proceed. Otherwise the errors associated with the integra-
tion formula for one lower order are estimated, followed by the selection of a new
step size, and possibly a lower order. The step is then retried until it succeeds, or
until the smallest allowable step size with k = 1 fails. In the latter case, an error
message is printed, and program execution is halted.

Correction (4.11), error estimation (4.12), and error checking (4.13) proceed
serially for the sensitivity solution vectors s;(¢),j =1, ..., M, as depicted by the
dashed line in Figure 2. Failures of the error test initiate changes of integration
order and step size, which are obtained from (analogous to Gear [14]):

1 / 1 \1/(k+1)

1 1 k
a=—|—— s  =0,..., M (order £ — 1 4.16
13 <max,. le/e n) J ( ) @16)

a= j=0,..., M (order k)

1 1 1/(k+2)
o 12 (maxj e/a "> , J=0,..., M (order £ + 1)
where « is the ratio of a new step size for the respective order to the current step
size. The estimates of o are made after k + 1 steps have been taken since the last
change in order or step size, or if the local error criterion is not satisfied (except
in the latter case no attempt is made to increase the order). The desired value of
« is the maximum value computed by use of (4.16). Like LSODE, ODESSA does
not increase the step at the current order k unless the increase is greater than 10
percent, since a smaller increase is seen as not worth the computer time to
perform it.

After the successful error check of all the solution vectors, the Nordsieck arrays
are updated, and the integration continues. If k + 1 steps have been taken since
the last change in order or step size, a new order and step size is selected by
(4.16). Otherwise, the same step size is used to advance the solution.

5. NUMERICAL TESTING AND DISCUSSION

In this section, we apply ODESSA to two example problems. The first example
is provided by a CO oxidation mechanism [29]. This mechanism is comprised of
52 reactions involving 11 species. In an earlier study [17], this problem was used
as the basis of comparison between the AIM (analytically integrated Magnus),
GFM (Green’s function method), DM (direct method), and FD (finite difference)
methods. The second example is provided by an ethane pyrolysis mechanism
[18], comprised of 7 species and 5 reactions. Earlier studies [9, 16] have applied
the AIM, GFM, DM, FD, and DDM (decoupled direct method) methods to
calculate sensitivity coefficients for this problem.

5.1 CO Oxidation Example

In this example, we compare ODESSA and AIM, which was the most efficient
algorithm in the previous study [17]. Performance comparisons between these
methods is complicated by different error control strategies. To circumvent this
problem, the error tolerances for each method were chosen to provide an averaged
error of about 2 percent in the normalized sensitivities, d In y;/d In p;, whose
values are greater than 107°. The results obtained are shown in Figure 3, which
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SO =

GFM

Fig. 3. Relative execution times for first-
order sensitivities versus number of pa-
rameters analyzed. Methods shown are
ODESSA (0), AIM (<), GFM (O0), DM
(a), and FD (+).

ODESSA

| 1 i L

0 20 40 60 80 100
NUMBER OF PARAMETERS

SIMULATION TIME EQUIVALENTS (STEs)
w
o
I

is adapted from the original study. The computation time units are in simulation
time equivalents (STEs). One STE equals the computational expense of solving
the kinetics problem alone, which in this study equals 22.6 VAX-11/750 CPU
seconds.

While AIM has a significant fixed cost associated with calculation of Green’s
functions, ODESSA has no such fixed cost. In addition, ODESSA had generally

AAAAAAAAAAAAAAAA

requires a separate vector solution of (2.2), the effort required is an approximately
linear function of the number of parameters, which was confirmed experimen-
tally). Further efficiencies in ODESSA can be achieved by suppying the analytical
derivatives df/dp. Since the frequency of derivative calculations in ODESSA is
generally greater than in AIM, analytical derivatives decrease the marginal cost
per parameter in ODESSA more than in AIM. For this example, an improvement
of one STE was realized by supplying the analytical derivatives. In all cases the
analytical Jacobian was supplied.

In ODESSA, the overall expense for providing error control of S(¢) through
mutually dependent error control added only about 10 percent to the cost of the
sensitivity calculation.

5.2 Ethane Pyrolysis Example

This relatively small-scale system is very stiff, and represents a significant
challenge to sensitivity algorithms. In fact, both the DM and the GFM were
unable to determine the full set of sensitivities with reasonable accuracy and
efficiency [16]. The difficulties encountered by the GFM were overcome by
the AIM modification [16], but still greater efficiency was reportedly achieved
by the DDM [9]. Improvements in accuracy were also reported. The following
compares ODESSA, DDM, and AIM with major emphasis on error control
strategies.

We begin by considering the solution of the kinetic model by LSODE (ODESSA
without sensitivities). In Table I, the error in y(t), the number of steps (NST),
and the computation time (CPU seconds) are given as a function of the relative
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Table I. Error in Z(t) from Independent
Kinetic Solution as a Function of the
Specified Error Tolerances

RTOL* E(( Z)b NST=¢  CPU (sec)**

107 405.6 5 0.26
107 1112.8 25 1.47
107° 155.4 16 0.72
io® 0.5 15 0.85

1077 223.4 19 0.87
107® 0.1 51 2.02

*ATOL = RTOL + 1072, RTOL = Relative
Tolerance, ATOL = Absolute Tolerance.

> See equation (5.1).

¢ Number of integration steps.

4 Values reported at £ = 20.0 seconds.

¢ Timing studies conducted on a VAX 11/750.

error tolerance RTOL. (The absolute error tolerance ATOL set at RTOL/100
throughout this study. ATOL and RTOL are used to calculate the error weights
used in equation (4.8).) The error E(y) is an average over the two output times,
t = 1.0 and 20.0 seconds:

(5.1)

7 * —_
E(y )__100 lyl (1.0) — y,f 0) | + | ¥i(20.0) — ¥:(20.0) | .
[

| y*(1.0 ly%(20.0) |
14 5 IRARCRY 1 Vi \&Vuj | J

N

The exact solution, denoted by superscript * , is obtained from an independent
run with RTOL = 107'°. The reasons for the nonmontic decrease in E( y) as the
tolerances are decreased are unclear, but the abnormally high accuracy in y(t)
achieved with RTOL set to 107° is quite important because in comparing the
AIM method and the DDM, Dunker [9] reports his findings at these tolerances.
Not until RTOL is reduced below 1078 do the errors in y(t) actually stabilize,
that is, decrease monotonically, under various conditions. The results reported
in [9] were therefore obtained under peculiar conditions conducive to fully
dependent error control on S(t), and must be considered somewhat fortuitous.
In a separate series of ODESSA runs reported in Table II, the error in y(t)
was again calculated as a function of the specified error tolerances. In these
experiments, however, a sensitivity analysis was also performed. The sensitivities
were calculated using the same tolerances applied to the solution of the model.
The number of repeated steps (NRS) due to the sensitivity analysis are also
listed; in each case, the rate constant k,, for example, s:(¢t) = —3dy(t)/dk,, is
responsible. The simultaneous solution of kinetic and sensitivity equations re-
quires a greater number of integration steps indicating the sensitivities are
controlling the joint solution. In other words, indirect error control provided by
the solution y(t) is inadequate for the solution S(t). Additionally, the mutually
dependent error control strategy had a substantially positive influence on the
stability of the solution, as indicated by the monotonically decreasing errors in
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Table II.  Error in y from Joint Solution as a Function of
the Specified Error Tolerances

RTOL* E(y)® NSTe¢ NRS* CPU (sec)®!
1073 154.5 20 4 3.33
107 122.6 102 22 17.51
1075 9.5 57 10 10.10
1078 0.1 44 1 7.66
1077 0.0 63 2 11.14
107 0.0 90 2 16.47

. "ATOL = RTOL * 107% RTOL = Relative Tolerance, ATOL =
Absolute Tolerance.
b See equation (5.1).
‘Number of integration steps.
4 Values reported at ¢t = 20.0 seconds.
¢ Number of repeated steps due to sensitivity analysis.
fTiming studies conducted on a VAX 11/750.

Table III. Error in y and §,(t) as a Function of the Specified Error Tolerances
RTOL(y)* RTOL(s,)® E(yr E(s;)® NST?* NRS*f CPU (sec)*®

1078 1078 0.0 0.0 90 2 16.47

107® 10°° 0.1 0.1 51 0 8.83

1078 107 0.1 0.1 44 1 7.66

107¢ 107° 0.2 0.3 30 2 5.37
® ATOL = RTOL * 107*; RTOL = Relative Tolerance, ATOL = Absolute Tolerance

> Tolerances for g;,j = 2, . . ., 5, equal tolerances for y.
¢ See equation (5.1).

4 Number of integration steps.

© Values reported at ¢t = 20.0 seconds.

f Number of repeated steps due to sensitivity analysis.
¢ Timing studies conducted on a VAX 11/750.

Table II. The computational effort associated with mutually dependent error
control on S(t) proved to be less than 5 percent of the total computational effort.

Mutually dependent error control in ODESSA allows considerable flexibility
in specifying the error tolerances. Table III contains the errors in y(¢) and s:(t)
as a function of the error tolerances applied to each solution vector. Equivalent
tolerances were applied.to s;(t), j = 2, ..., 5, as to y(¢). The results show four
sets of tolerances, each yielding solutions that are accurate to within 3 percent,
but varying considerably in the computational effort required. The first and third
entries correspond to conditions from Table II where equivalent tolerances were
applied to y(t) and S(t). The second entry demonstrates that indirect error
control provided by y(t) may be sufficient for the joint solution. However, greater
efficiency is achieved if the direct error control on S(t) is active. (Compare the
second and the final entries.) The final entry further demonstrates that the joint
solution is governed by the requirements of g;(¢). Increasing the tolerances on
this solution vector alone resuits in still less computational effort. These results
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Table IV. Computational Effort for Initial Condition

Sensitivities*

Set of 1.C. Sensitivities NST= CPU (gec)*?
Complete set® 88 14.81
Complete set? 75 12.70
(')Z/(')[(‘JgH(;]J‘e 51 9.47
19__)_//¢9[(32H¢;]o°’f 28 4.68
Complete set™* 15 2.60

* Reported values are for averaged errors no greater than
1% except where noted.

# Values reported at t = 20.0 seconds.

* Timing studies conducted on a VAX 11/750.

¢ For absolute values greater than 1075,

¢ For absolute values greater than 1072,

¢Fully dependent error control: RTOL(y) = 1078,
ATOL(y) =107,

fMutually dependent error control: RTOL(y) = 107¢,
ATOL(y) = 10%, RTOL(3y/d[C.Hsle) = ATOL(dy/
3[CzHs)o) =107, all other tolerances set to 10°. -
¢Fully dependent error control: RTOL(y) = 1075
ATOL(y) = 107%; averaged errors as low as 1.8% for
dln ‘Z/a_ln[02H6]o

indicate that mutually dependent error control, as implemented in ODESSA,
offers the greatest flexibility to minimize the computational effort required for
the solution of any given problem.

The relative performance of ODESSA on the coupled set of rate constant and
initial condition sensitivities was also examined. Initial results indicated that a
savings in computational effort of about 15 percent was realized by ODESSA
over the AIM method. However since only the normalized initial condition
sensitivities with respect to [C:Hs]o are nonzero, the initial error criterion, which
was based on the normalized sensitivities, proved to be unreasonable. In subse-
quent experiments, ODESSA was used to calculate the initial condition sensitiv-
ities under various conditions subject to global error criteria based on the
unnormalized quantities. Selected results, presented in Table IV, show that
ODESSA requires considerable effort to accurately calculate the full set of initial
condition sensitivities. In fact, considerably greater effort is required than that
which is predicted by the marginal cost of successive rate constant sensitivities.
Although these observations were unique to this example, they suggest that the
AIM method may offer computational savings for certain problems where the
full set of initial condition sensitivities is desired.

6. SUMMARY

The successful implementation of ODESSA has provided improved reliability at
greater efficiency than other sensitivity analysis methods, and has added a degree
of flexibility previously unattained. The algorithm utilizes proven numerical
methods and retains the operational and portability features of the widely
accepted software package LSODE upon which it is based.
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