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The methodology for the simultaneous solution of ordinary differential equations and the associated 
first-order parametric sensitivity equations is presented, and a detailed description of its implemen- 
tation as a modification of a widely disseminated implicit ODE solver is given. The error control 
strategy ensures that local error criteria are independently satisfied by both the model and sensitivity 
solutions. The internal logic effectuated by this implementation is detailed. Numerical testing of the 
algorithm is reported, results indicate that greater reliability and improved efficiency is offered over 
other sensitivity analysis methods. 

Categories and Subject Descriptors: G.1.7 [Numerical Analysis]: Ordinary Differential Equations- 
LSODE, ODESSA; initial value problems; error analysis; stiff equations; 1.6.4 [Simulation and 
Modeling]: Model Validation and Analysis; G.4 [Mathematics of Computing]: Mathematical 
Software-efficiency 

General Terms: Algorithms, Measurement, Performance 

Additional Key Words and Phrases: Model error, model prediction uncertainty, parameter variation, 
sensitivity analysis 

1. INTRODUCTION 

First-order sensitivity analysis involves examination of the effects of differential 
variations in the fixed coefficients or boundary conditions (parameters) of a 
mathematical model. The basic measures of sensitivity are the partial derivatives. 
d(mode1 responses)/J(model parameters), called the sensitivity coefficients of the 
model. These coefficients may be useful in uncertainty analysis and reduction of 
complex nonlinear models, examples being provided in the fields of chemical 
kinetics [ 1,8] and econometrics [5]. Sensitivity calculations may also be required 
for gradient evaluation in optimizations [3], in experimental design and analysis 
[ 10, 201, and in many phases of chemical process design [22]. In this paper we 
address the calculation of sensitivity coefficients associated with systems of first- 
order ordinary differential equations. The algorithm falls into a class of methods 
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called explicit simultaneous methods, which have been shown to be very prom- 
ising in terms of accuracy and efficiency [9]. The program ODESSA is a 
modification of the initial value solver LSODE [ 131, and shares very similar 
operational and portability features. 

In the following section, a formal problem statement is given. This is followed 
in Section 3 by a summary of previous methods providing a basis for the numerical 
comparisons in Section 5. The current algorithm is described in Section 4. 

In the accompanying paper [20], the ODESSA package is described in terms 
of its standard usage and optional capabilities. A description of the essential 
differences between ODESSA and LSODE are also provided to expedite famil- 
iarization to ODESSA for experienced LSODE users. 

2. PROBLEM STATEMENT 

The ODESSA modification of the LSODE package provides the capability for 
computing first-order sensitivity coefficients for systems of stiff or nonstiff 
ordinary differential equations (ODES) of the general form: 

gt; p) = !y 
- = f(Y, t; p), y(O) = z”9 -- (2.1) 

where y is an N-dimensional dependent-variable vector, or model solution vector, 
2’ supplies the initial conditions, t is the independent variable, and p is an 
M-dimensional constant vector of (specified) model parameters. The governing 
equations for the first-order sensitivity coefficients are derived by differentiation 
of (2.1) with respect to the model parameters p_, yielding 

af(t) 
s(t) = J(t)_S(t) + L 

dP - (2.2) 

s; = 1, if pj = yo, or 0, otherwise. 

In (2.2), s(t) is the N X M sensitivity coefficient matrix Sij s dyi/dpj, J(t) is the 
N X N Jacobian matrix Jij = dfi/dy;, and df (t)/dp is an N X M matrix of partial 
derivatives df;/dpj. The jth column in s(t), &i(t), is the sensitivity solution vector 
for the jth model parameter pj. Note that if pj represents an initial condition on 
(2.1), then a[/dpj = Q. 

Solution of (2.1) and (2.2) proceeds jointly in the ODESSA package, with 
information generated in the solution of (2.1) used in the solution of (2.2). The 
exact sequence of operations and further details are described in Section 4. 

3. REVIEW OF PREVIOUS WORK 

The simplest conceptual route to calculating first-order sensitivity coefficients is 
via a finite-difference approximation: 

dy_o ~ x(t; P_ + APj) - x(t; P_) 
ap APj , (3.1) 
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where Apj is a finite perturbation in the jth element in p_. This method suffers 
from two drawbacks: the numerical values obtained may vary significantly with 
Apj [17], and repeated solution of the model (at least once for each parameter) 
is required. The former disadvantage may be overcome by integrating equations 
(2.1) and (2.2) simultaneously with an appropriate differential equation solver. 
For the full set of sensitivities, a combined 2N-dimensional system must be 
solved M times. For some numerically stable systems, this dimensionality can 
be halved by decoupling (2.1) and (2.2), first solving and storing the solution 
to (2.1), and subsequently using this information to construct (i.e., interpolate) 
J(t) and df(t)/@ for (2.2). The decoupled system requires the solution of 
only N(M + 1) ODES. These two algorithms have been referred to as direct 
methods (DM) [6, 281. 

For models in which M > N, it is often advantageous to use the Green’s 
function method (GFM). The linear nature of (2.2) allows the construction of 
the homogeneous solution to this set of nonhomogeneous differential equations 
in the form of an n x n Green’s function matrix. First-order sensitivities may 
then be expressed in integral rather than differential form. (The exact sequence 
of operations and other details are given in [7] and [ 151.) Because numerical 
quadrature is usually simpler than the solution of ODES, the GFM is generally 
more efficient than the DM, if M > N. 

The majority of computing time for the GFM is expended in the solution of 
the Green’s function matrix. By exploiting the linearity of this equation, the 
analytically integrated Magnus (AIM) [16] modification of the GFM utilizes a 
specialized technique, the piecewise Magnus method (PMM), for this calculation, 
handling the problem as a matrix exponential rather than a succession of N, 
N-vector ODES (see [16] and [17] for details). The total effort in the PMM 
solution of the Green’s function matrix is proportional to N3. By contrast, the 
effort expended in this solution by application of vector-ODE techniques is 
proportional to N4. The additional factor of N significantly affects the relative 
efficiencies of the two approaches, favoring AIM for large problems. 

The degree and complexity of the numerical manipulations and approximations 
required by the AIM implementation have raised concerns over its reliability. 
Recent research has focused on a class of algorithms designed to fully exploit the 
similarities between the mathematical structure of the model and the sensitivity 
equations in a more straightforward manner. Equations (2.1) and (2.2) have the 
same Jacobian, a feature that can be directly exploited in the sensitivity calcu- 
lation. By applying a backward differentiation formula (BDF) [12] to the solution 
of (2.1) and (2.2), Lojek [24] showed that the model and sensitivity solution 
vectors can be jointly calculated using the same step size and order of integration. 
The method differs most fundamentally from the conventional DM in that the 
sensitivity solution vectors are computed noniteratively and concurrent with the 
solution of the model equations. Numerical results provided by Dunker [9] 
demonstrate the improved efficiency and accuracy of this new method. It was 
also discovered that Adams’ formulas [12] can also be used to derive an explicit 
formula, enabling both stiff and nonstiff systems to be solved with a single 
implementation [22]. This method has also been extended to systems of coupled 
differential and algebraic equations [4, 231. These earlier works provide the basis 
and motivation for this paper and the ODESSA package. 
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4. SOLUTION METHODOLOGY 

The overall solution sequence for ODESSA given in Figure 1 is similar to a 
previous simultaneous sensitivity analysis method [9]. Within a successful inte- 
gration step, y_(t) is first advanced from tn.-l to t,, followed by the propagation of 
S(t) using the identical step size and order of integration. This procedure is 
repeated across each successful integration step. The code used for the prediction, 
correction, and error control of the model solution vector r(t) is identical to that 
in LSODE (however, mandated by the sensitivity calculation, the Jacobian is 
never more than one step out of date). As detailed subsequently, the choice of 
integration step size and order are based on the behavior of both model and 
sensitivities solutions. As a background for the presentation of ODESSA, 
Section 4.1 is a brief summary of LSODE. A description of the implementation 
of ODESSA is contained in Section 4.2. Issues of solution stability and error 
control are addressed in Section 4.3. Section 4.4 contains a flow diagram depicting 
the sequence of calculations for the simultaneous integration of the model and 
sensitivity equations. 

4.1 The ODE Solution 

The LSODE package uses variable-order, predictor-corrector formulas for the 
integration of initial-value ODES as described by (2.1). For stiff systems, Gear’s 
backward differentiation formulas (BDFs) are used. Otherwise, Adams’ method 
can be used. The particular method is selected by the user. The detailed mathe- 
matical treatment of these methods in the solution of initial-value problems can 
be found in several references [ll, 12,141; no attempt is made here to reproduce 
these works. It is important to note, however, that a single representation for 
both Adams’ formulas and BDFs exists within LSODE. This is accomplished 
through the use of Nordsieck arrays _V [26], which store the solution history of 
y(t) as vectors of scaled derivatives at the current time step n: 

Y, = 
h2 d”y, hk d”y, 

in hi,, r dt2 . . . - A 
I k! dtk * 

(4.1) 

At issue are the relative convenience and efficiency of informationally equivalent 
implementations. The Nordsieck arrays facilitate local error estimation and, 
consequently, the simultaneous change of integration step size and order is easily 
effected through their use. They also allow a more efficient prediction, denoted 
by superscript (O), by use of the single equation: 

f.f”) = DU - R --n 1, (4.2) 

where the matrix D is the Pascal triangle matrix. Considerable savings in 
computational effort may be achieved by carrying out the matrix multiplications 
implied in (4.2) by successive additions as suggested by Gear [ 111, [ 141. 

Using the Nordsieck representation also allows a single corrector formula to 
be used: 

(4.3) 

where I is a normalized coefficient vector and superscript T denotes the transpose. 
The vector 1 is a function of the method and the integration order k. The 
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n-2 n-l n-l n n n+l n+l 

Fig. 1. Solution procedure for simultaneous sensitivity analysis. (Adapted from [9].) Circled numbers 
indicate sequence in which eqs. (2.1) and (2.2) are solved. 

accumulated corrections vector, a,, is defined at t, by 

Yrl = y? + loan, (4.4) 

hf,, = h$:’ + a,, (4.5) - - 

h$’ + a, = hf(y? + loan, t,; p). (4.6) - - 

The elements in a correspond to the scalar equations in y_(t). Equations (4.4) and 
(4.5) are the first and second scalar equations of (4.3), respectively. Substitution 
of these equations into (2.1) yields (4.6), which represents the approximated 
solution to the ODES at the current step t,. In practice, the equalities in (4.6) 
hold only within finite tolerances that define the residuals t of the system (as 
functions of a,): 

r(an) = hfb!? + loan, trd - U-$?’ + a,). (4.7) - - 

LSODE uses successive substitution or a modified Newton scheme to effectively 
satisfy the relations !: 5 imax, where imax is a maximum error vector calculable 
from user-specified tolerances. (ODESSA uses the same Newton scheme but with 
a Jacobian that is at most one step old.) Clearly, at the predicted conditions 
($!?, y!?, t,), the residuals are given by r(0). 
-Up&n convergence of (4.7), the accumulated correction vector, a,, is used in 

the estimation of the local truncation errors, go, in y(t) at the current integration 
step. The error control strategy in LSODE sets the integration step size and 
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order to satisfy the following inequality at each integration step: 

1 N 

z( ) 

2 

E i=l 
eo,i 

I 1.0, 
WO,i 

(4.8) 

where the subscript i denotes the ith element of a vector. The above expression 
is the weighted root-mean-square norm of the error, subsequently denoted simply 
as ]I eOo/wO I(. Here, N equals the number of ODES in (2.1), and o. is the 
N-dimensional error weighting vector that is selected by the user to represent 
relative and/or absolute error control. 

4.2 The Sensitivities Solution 

The underlying idea of simultaneous methods can be illustrated by replacing the 
derivatives in (2.2) by a difference approximation. Rearrangement of the resulting 
expression yields an explicit formula for the solution of _S (t) at t,. For example, 
if the simple backward difference, 

is used, (2.2) can be rearranged to yield 

(4.9) 

(4.10) 

where h (=tn - tnpl) is the integration step size, and all other terms are as 
previously defined in (2.2). Note that the required derivatives are evaluated at 
the current integration step, t,, implying the solution of the model equations 
prior to the evaluation of equation (4.10). In practice, the sensitivities are 
calculated using the same integration step size (and integration order) as the 
model solution. This is accomplished without introducing additional storage by 
updating the sensitivities concurrently with the model solution. Also the coeffi- 
cient matrix (L - h&J is not inverted, but rather LU-decomposed. _S, is 
calculated by (repeated) back substitution (followed by forward substitution). 

The algorithms in ODESSA are an extension of this approach. Instead of using 
the first-order formula (4.9), ODESSA approximates the derivative using the 
appropriate kth-order formula. (A detailed derivation using the original variable- 
order BDFs and Adams’ formulas is presented in [23].) Integration step size and 
order are selected to satisfy local error criteria, with a secondary constraint added 
to secure the convergence of the corrector equations for y(t). 

In ODESSA, as in LSODE, the integration formulas are represented in terms 
of Nordsieck arrays, defined for each parameter of interest. Prediction and 
correction are handled analogously to (4.2) and (4.3). The accumulated correction 
is defined in an equivalent manner to a, for the model solution. Rearrangement 
of the resulting residuals for the sensitivity equations results in an explicit formula 
for the solution of s(t) at tn: 

sn = [L - hZ,,_J,J1(s:) - hZo$:’ + hlodf,/dp). (4.11) 

The Jacobian in (4.11), Jn, is (usually) evaluated at current solution conditions 
y,, t,. However, depending on the convergence of the model solution, J, may be 
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evaluated at t, using the predicted values of Ye. Numerical tests indicate that no 
noticeable loss in accuracy results, and computational savings are realized with 
fewer Jacobian evaluations and decompositions necessary to solve a problem. 

4.3 Error Control 

Errors associated with the sensitivity calculations are computed in the equivalent 
manner to the errors associated with the model solution vector: Local errors are 
assumed to be proportional to the difference between corrected and predicted 
values. For a single parameter, p1 : 

(0) 
e1 a sn - sn . (4.12) 

For the multiple parameter case, ODESSA controls the local errors according to 
inequalities of the form: 

11 cj/C$j 11 5 1.0 (j = 1, * *. , M), (4.13) 

where the column vectors ej contain the estimated local errors for the correspond- 
ing sensitivity solution vectors sj, and where wj are the vectors of weights selected 
by the user to represent relative and/or absolute error control for the sensitivities 
Sj(t). We refer to the implementation where the inequalities in (4.13) and (4.8) 
are satisfied at every step in the integration as the mutually dependent error 
control strategy [22]. 

There are several possible alternative approaches. The model error vector go 
can be augmented with the sensitivity error vectors ej, i = 1, . . . , M, to form a 
column vector E, to which the vector-norm inequality 

II E/WII 5 1.0 (4.14) 

is applied. This method is used in [4], which is a sequential sensitivity analysis 
modification of the DASSL [27] solver. Although computational effort is largely 
unaffected, numerical tests indicate that, at any given step, a majority of the 
inequalities in (4.13) are satisfied, thereby compensating for larger errors with 
respect to certain parameters in (4.14). This problem can be circumvented by 
using the maximum norm in place of the weighted RMS norm; however this 
yields unnecessarily stringent error control [ 121. Another alternative, referred to 
as fully-dependent error control [22], is to rely on the error control provided in 
the solution of the model, as in [9]. This removes any direct control over errors 
in the sensitivity solution, and provides no guarantee against accumulation of 
errors in S(t). 

In the mutually dependent implementation, the dynamic behavior of both the 
model and the sensitivities are taken into account by applying an error test to 
each solution vector y_(t) and sj(t), j = 1, . . . , M. This offers several advantages. 
Foremost among these are that the inequalities in (4.13) are satisfied on every 
step. This provides assurance that errors in the sensitivities are controlled. 
Secondly, since solution propagation, error estimation, and error checking can 
proceed independently for each solution vector, error test failures can be detected 
sooner on a given step, saving the computational expenses of correction, error 
estimation, and error checking associated with the solution vectors not yet 
considered. On average this will save the expense of considering half of the 
solution vectors on an integration step that is going to fail. If the error test fails 
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for any vector ej, j = 1, . . . M, the step is immediately repeated beginning 
with the selection of a new step size, and possibly a new order of integration, 
depending on the severity of the error violation. Additionally, we have found that 
decreasing the tolerances on y(t) is less effective in improving the accuracy of 
S(t) than providing error control directly on a(t). Lastly, error tolerances can 
be specified independently on each solution vector, which may be useful in 
reducing the number of integration steps required to solve a problem. ODESSA 
stores the number of repeated integration steps attributable to any single solution 
vector to assist in setting individual tolerances. Mutually dependent implemen- 
tations offer the greatest reliability and, of these, the ODESSA implementation 
is most reliable offering a higher degree of flexibility and (on average) greater 
efficiency. 

4.4 Calculational Sequence 

A detail of the sequence of calculations within ODESSA is presented in 
Figure 2. It should be immediately noticed that several nested loops exist with 
the initial task of selecting the integration step size and integration order. At the 
beginning of a problem, the order is set to one, and the initial step size is 
calculated as a function of the error tolerances supplied and the initial output 
time requested by the user. Optionally, the initial step size can be directly 
supplied by the user. 

After the integration step size and order have been selected, the model and 
sensitivity solutions are predicted for at the next integration step using equation 
(4.2) (and the analogous form for the sensitivities). In ODESSA, the prediction 
step for both the model and sensitivities is carried out simultaneously. It is 
conceivable that greater efficiency can be achieved if the prediction of the 
sensitivities is performed after the model solution converges. This obviates the 
need to retract the predicted sensitivities to their values before prediction if the 
model solution fails to converge with the current step size. However, the savings 
are not seen to be significant. Prediction (or retraction) is carried out by 
successive additions (or subtractions), which is relatively inexpensive. 

Only those components of the Nordsieck arrays contained in the residual (4.7), 
namely, y_ (O) and hy O(O), need be used in the model correction step. ODESSA 
provides two options to calculate a,: successive substitution and Newton’s 
method. If a sensitivity analysis is being performed, Newton’s method must be 
used. Application of Newton’s method to (4.7) yields the following iteration 
formula: 

(m+l) 
(CL - CX:~,“‘) = [L - hZ,,J]-l~(g:mm’). (4.15) 

The superscripts (m + 1) and (m) refer to the iteration count. Comparing (4.15) 
with (4.11) reveals that the iteration matrix in (4.15) is of the exact same form 
as the coefficient matrix in (4.11). Since this matrix must be evaluated at least 
once per step as required by (4.11), the iteration matrix in (4.15) is never more 
than one step out of date, i.e.,& in (4.15) is generallyJ,-l. It sometimes happens, 
however, that even at the previously corrected values &n-l, tnel), the iteration 
matrix must be updated to converge the corrector at current conditions (y,, tn). 
If this occurs, the Jacobian is evaluated at the current predicted conditions 
c$‘, t,). If the corrector still fails to converge, the step size is reduced, the 
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SELECT STEP SIZE 

AND ORDER (4.16) + 

PREDICT MODEL VALUES INCREMENT 

(4.2) A 
INTEGRATION 

VARIABLE 

4 

CONVERGENCE 
REPEAT 

STEP 

CALCULATE I_ I * 1 SENSITIVITIES (4.11) 
I 
I 
I 
I 
I 
I 
I 
I 
I NO I l.-ll- 0 

NO 

UPDATE NORDSIECK 

ARRAYS (4.3) 

Fig. 2. Calculational sequence of explicit simultaneous sensitivity analysis as implemented in 
ODESSA. Relevant equations appear in parentheses. 

predicted values are retracted, and the step is tried again, beginning with the 
prediction of y(t) and _S(t) using the now current step size. This involves a 
resealing of the Nordsieck arrays u and Z at the previous step tnP1. The maximum 
number of iterations allowed in ODESSA, if a sensitivity analysis is being 
performed, is four. 

Following corrector convergence, the local error associated with y(t) is esti- 
mated and the error check is made. If the inequality in (4.8) is satisfied, the 
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sensitivity calculations proceed. Otherwise the errors associated with the integra- 
tion formula for one lower order are estimated, followed by the selection of a new 
step size, and possibly a lower order. The step is then retried until it succeeds, or 
until the smallest allowable step size with k = 1 fails. In the latter case, an error 
message is printed, and program execution is halted. 

Correction (4.11), error estimation (4.12), and error checking (4.13) proceed 
serially for the sensitivity solution vectors sj(t), j = 1, . . . , M, as depicted by the 
dashed line in Figure 2. Failures of the error test initiate changes of integration 
order and step size, which are obtained from (analogous to Gear [14]): 

~=~(maxj,~~j,,,,)l/ll+l), j=O,...,M(orderk) 

a=$(maxj,~ej,wj,,~k9 j=O,...,M(orderlz-1) (4.16) 

~=~(maxj,~~j,~j,,)lll*lz’, j=O,...,M(orderk+l) 

where LY is the ratio of a new step size for the respective order to the current step 
size. The estimates of (Y are made after k + 1 steps have been taken since the last 
change in order or step size, or if the local error criterion is not satisfied (except 
in the latter case no attempt is made to increase the order). The desired value of 
(Y is the maximum value computed by use of (4.16). Like LSODE, ODESSA does 
not increase the step at the current order k unless the increase is greater than 10 
percent, since a smaller increase is seen as not worth the computer time to 
perform it. 

After the successful error check of all the solution vectors, the Nordsieck arrays 
are updated, and the integration continues. If k + 1 steps have been taken since 
the last change in order or step size, a new order and step size is selected by 
(4.16). Otherwise, the same step size is used to advance the solution. 

5. NUMERICAL TESTING AND DISCUSSION 

In this section, we apply ODESSA to two example problems. The first example 
is provided by a CO oxidation mechanism [29]. This mechanism is comprised of 
52 reactions involving 11 species. In an earlier study [17], this problem was used 
as the basis of comparison between the AIM (analytically integrated Magnus), 
GFM (Green’s function method), DM (direct method), and FD (finite difference) 
methods. The second example is provided by an ethane pyrolysis mechanism 
[18], comprised of 7 species and 5 reactions. Earlier studies [9, 161 have applied 
the AIM, GFM, DM, FD, and DDM (decoupled direct method) methods to 
calculate sensitivity coefficients for this problem. 

5.1 CO Oxidation Example 

In this example, we compare ODESSA and AIM, which was the most efficient 
algorithm in the previous study [17]. Performance comparisons between these 
methods is complicated by different error control strategies. To circumvent this 
problem, the error tolerances for each method were chosen to provide an averaged 
error of about 2 percent in the normalized sensitivities, a In yi/a In pi, whose 
values are greater than 10m3. The results obtained are shown in Figure 3, which 
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-0 20 40 60 80 100 
NUMBER OF PARAMETERS 

Fig. 3. Relative execution times for first- 
order sensitivities versus number of pa- 
rameters analyzed. Methods shown are 
ODESSA (O), AIM (O), GFM (O), DM 
(A), and FD (+). 

is adapted from the original study. The computation time units are in simulation 
time equivalents (STEs). One STE equals the computational expense of solving 
the kinetics problem alone, which in this study equals 22.6 VAX-11/750 CPU 
seconds. 

While AIM has a significant fixed cost associated with calculation of Green’s 
functions, ODESSA has no such fixed cost. In addition, ODESSA had generally 
similar or lower marginal costs per sensitivity parameter. (Since each parameter 
requires a separate vector solution of (2.2), the effort required is an approximately 
linear function of the number of parameters, which was confirmed experimen- 
tally). Further efficiencies in ODESSA can be achieved by suppying the analytical 
derivatives df/dp. Since the frequency of derivative calculations in ODESSA is 
generally greater than in AIM, analytical derivatives decrease the marginal cost 
per parameter in ODESSA more than in AIM. For this example, an improvement 
of one STE was realized by supplying the analytical derivatives. In all cases the 
analytical Jacobian was supplied. 

In ODESSA, the overall expense for providing error control of a(t) through 
mutually dependent error control added only about 10 percent to the cost of the 
sensitivity calculation. 

5.2 Ethane Pyrolysis Example 

This relatively small-scale system is very stiff, and represents a significant 
challenge to sensitivity algorithms. In fact, both the DM and the GFM were 
unable to determine the full set of sensitivities with reasonable accuracy and 
efficiency [ 161. The difficulties encountered by the GFM were overcome by 
the AIM modification [ 161, but still greater efficiency was reportedly achieved 
by the DDM [9]. Improvements in accuracy were also reported. The following 
compares ODESSA, DDM, and AIM with major emphasis on error control 
strategies. 

We begin by considering the solution of the kinetic model by LSODE (ODESSA 
without sensitivities). In Table I, the error in y(t), the number of steps (NST), 
and the computation time (CPU seconds) are &en as a function of the relative 
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Table I. Error in y(t) from Independent 
Kinetic Solution% a Function of the 

Specified Error Tolerances 

RTOL E((yJb NSFd CPU (sec)d.’ - 

lo+ 405.6 5 0.26 

lo-’ 1112.8 25 1.47 

1o-5 155.4 16 0.72 

1o-6 0.5 15 0.65 

lo+ 223.4 19 0.87 

10-R 0.1 51 2.02 

’ ATOL = RTOL * lo-*; RTOL = Relative 
Tolerance, ATOL = Absolute Tolerance. 
b See equation (5.1). 
’ Number of integration steps. 
d Values reported at t = 20.0 seconds. 
e Timing studies conducted on a VAX 11/750. 

error tolerance RTOL. (The absolute error tolerance ATOL set at RTOL/lOO 
throughout this study. ATOL and RTOL are used to calculate the error weights 
used in equation (4.8).) The error E(y) is an average over the two output times, 
t = 1.0 and 20.0 seconds: 

E(y) = g ,i 
I YT(l*O) - Yi(l.0) I + lYi*(20-0) - Yi(20.0) I 

I Y)wN I lY,*@O.O) I * 
(5.1) 

‘ 1 

The exact solution, denoted by superscript * , is obtained from an independent 
run with RTOL = 10-l’. The reasons for the nonmontic decrease in E(y) as the 
tolerances are decreased are unclear, but the abnormally high accuracy in y(t) 
achieved with RTOL set to 10e6 is quite important because in comparing-the 
AIM method and the DDM, Dunker [9] reports his findings at these tolerances. 
Not until RTOL is reduced below lOPa do the errors in y(t) actually stabilize, 
that is, decrease monotonically, under various conditions. The results reported 
in [9] were therefore obtained under peculiar conditions conducive to fully 
dependent error control on S(t), and must be considered somewhat fortuitous. 

In a separate series of ODESSA runs reported in Table II, the error in y(t) 
was again calculated as a function of the specified error tolerances. In these 
experiments, however, a sensitivity analysis was also performed. The sensitivities 
were calculated using the same tolerances applied to the solution of the model. 
The number of repeated steps (NRS) due to the sensitivity analysis are also 
listed; in each case, the rate constant kl, for example, sl(t) = -dy(t)/dkl, is 
responsible. The simultaneous solution of kinetic and sensitivity equations re- 
quires a greater number of integration steps indicating the sensitivities are 
controlling the joint solution. In other words, indirect error control provided by 
the solution y(t) is inadequate for the solution S(t). Additionally, the mutually 
dependent error control strategy had a substantially positive influence on the 
stability of the solution, as indicated by the monotonically decreasing errors in 
ACM Transactions on Mathematical Software, Vol. 14, No. 1, March 1988. 
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Table II. Error in y from Joint Solution as a Function of 
the Specified Error Tolerances 

RTOL” Ed NSPd NRZ+ CPU (sec)d*’ 

lo+ 154.5 20 4 3.33 
lo-’ 122.6 102 22 17.51 
lo+ 9.5 57 10 10.10 
lo-” 0.1 44 1 7.66 
10-T 0.0 63 2 11.14 
1o-8 0.0 90 2 16.47 

‘; RTOL = Relative Tolerance, ATOL = 

b See equation (5.1). 
‘Number of integration steps. 
d Values reported at t = 20.0 seconds. 
e Number of repeated steps due to sensitivity analysis. 
f Timing studies conducted on a VAX 11/750. 

Table III. Error in y and s,(t) as a Function of the Specified Error Tolerances 

RTOL(y)” RTOU# _ E(Y) JQJ NW“*’ NRS”’ CPU (sec)‘sg 

1o-a 10-e 0.0 0.0 90 2 16.47 
lo+ 1o-6 0.1 0.1 51 0 8.83 
10-G lo+ 0.1 0.1 44 1 7.66 
lo+ lo+ 0.2 0.3 30 2 5.37 

a ATOL = RTOL * lo-*; RTOL = Relative Tolerance, ATOL = Absolute Tolerance. 
b Tolerances for gj, j = 2, . . . , 5, equal tolerances for y. 
‘See equation (5.1). 
d Number of integration steps. 
’ Values reported at t = 20.0 seconds. 
f Number of repeated steps due to sensitivity analysis. 
g Timing studies conducted on a VAX 11/750. 

Table II. The computational effort associated with mutually dependent error 
control on _S (t) proved to be less than 5 percent of the total computational effort. 

Mutually dependent error control in ODESSA allows considerable flexibility 
in specifying the error tolerances. Table III contains the errors in xl(t) and s1 (t) 
as a function of the error tolerances applied to each solution vector. Equivalent 
tolerances were applied. to Sj(t), j = 2, . . . , 5, as to r(t). The results show four 
sets of tolerances, each yielding solutions that are accurate to within i percent, 
but varying considerably in the computational effort required. The first and third 
entries correspond to conditions from Table II where equivalent tolerances were 
applied to y(t) and _S (t). The second entry demonstrates that indirect error 
control provided by y(t) may be sufficient for the joint solution. However, greater 
efficiency is achieved if the direct error control on s(t) is active. (Compare the 
second and the final entries.) The final entry further demonstrates that the joint 
solution is governed by the requirements of sl(t). Increasing the tolerances on 
this solution vector alone results in still less computational effort. These results 
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Table IV. Computational Effort for Initial Condition 
Sensitivities* 

Set of I.C. Sensitivities NST” CPU (sec)“*b 

Complete set’ 88 14.81 
Complete set? 15 12.70 
ay/a[C,Hs]d’ 51 9.47 

&W2W’ 28 4.68 

Complete setd,g 15 2.60 

* Reported values are for averaged errors no greater than 
1% except where noted. 
a Values reported at t = 20.0 seconds. 
b Timing studies conducted on a VAX 11/750. 
’ For absolute values greater than lOme. 
d For absolute values greater than 10m3. 
e Fully dependent error controi: RTOL(y) = lo-‘, 
ATOL(y) = lo-“‘. 
‘Mutuany dependent error control: RTOL(y) = 10m6, 
ATOL(y) = lo-‘; RTOL@y/a[C,H,],) = ATOL(ay/ 
B[CzH&) =10-l, all other tolerances set to 10’. - 
gFully dependent error control: RTOL(y) = 10m6; 
ATOL(y) = lo-‘; averaged errors as low 5s 1.8% for 
~3 In y/&r[C2H&. 

indicate that mutually dependent error control, as implemented in ODESSA, 
offers the greatest flexibility to minimize the computational effort required for 
the solution of any given problem. 

The relative performance of ODESSA on the coupled set of rate constant and 
initial condition sensitivities was also examined. Initial results indicated that a 
savings in computational effort of about 15 percent was realized by ODESSA 
over the AIM method. However since only the normalized initial condition 
sensitivities with respect to [C2Hslo are nonzero, the initial error criterion, which 
was based on the normalized sensitivities, proved to be unreasonable. In subse- 
quent experiments, ODESSA was used to calculate the initial condition sensitiv- 
ities under various conditions subject to global error criteria based on the 
unnormalized quantities. Selected results, presented in Table IV, show that 
ODESSA requires considerable effort to accurately calculate the full set of initial 
condition sensitivities. In fact, considerably greater effort is required than that 
which is predicted by the marginal cost of successive rate constant sensitivities. 
Although these observations were unique to this example, they suggest that the 
AIM method may offer computational savings for certain problems where the 
full set of initial condition sensitivities is desired. 

6. SUMMARY 

The successful implementation of ODESSA has provided improved reliability at 
greater efficiency than other sensitivity analysis methods, and has added a degree 
of flexibility previously unattained. The algorithm utilizes proven numerical 
methods and retains the operational and portability features of the widely 
accepted software package LSODE upon which it is based. 
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