cModel.py 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803
  1. import numpy
  2. import json
  3. import os
  4. import scipy.interpolate
  5. #for partial function specializations
  6. import functools
  7. import function
  8. import importlib
  9. importlib.reload(function)
  10. class model:
  11. def __init__(self):
  12. self.compartments={}
  13. self.seJ={}
  14. self.scaled=[]
  15. def add_input(self,compartmentName,parameterName):
  16. self.compartments[compartmentName]['input']=parameterName
  17. def add_compartment(self,compartmentName):
  18. self.compartments[compartmentName]={}
  19. self.compartments[compartmentName]['targets']={}
  20. self.compartments[compartmentName]['sensTargets']={}
  21. def getTimeUnit(self):
  22. try:
  23. return self.mod['timeUnit']
  24. except KeyError:
  25. return 's'
  26. import json
  27. def updateParameters(self, param_updates, jsonFile, newFile):
  28. """
  29. Updates the parameters directly within the pars structure and writes them to a new file,
  30. keeping the original structure intact.
  31. Parameters:
  32. param_updates (dict): Dictionary where keys are parameter names and values are new parameter values.
  33. jsonFile (str): Path to the original JSON file (for structure reference).
  34. newFile (str): Path to the new file where updated parameters will be saved.
  35. """
  36. # Update the parameters
  37. pars = self.parSetup['parameters']
  38. for parName, newValue in param_updates.items():
  39. if parName in pars:
  40. if "value" in pars[parName]:
  41. pars[parName]["value"] = newValue
  42. print(f"Parameter '{parName}' updated to {newValue}.")
  43. else:
  44. print(f"Parameter '{parName}' does not have a 'value' field.")
  45. else:
  46. print(f"Parameter '{parName}' not found in the model. Adding it.")
  47. pars[parName] = {"value": newValue}
  48. # Read the original file to get the structure
  49. with open(jsonFile, 'r') as file:
  50. data = json.load(file)
  51. # Merge updated parameters into the original data structure
  52. data['parameters'] = self.parSetup['parameters']
  53. # Save the updated data to a new file (not overwriting the original file)
  54. with open(newFile, 'w') as file:
  55. json.dump(data, file, indent=4)
  56. print(f"Parameters have been written to the new file: {newFile}")
  57. def bind(self,src,target,qName,pcName):
  58. #establish a flow from source compartment to the target
  59. #the source equation (where we subtract the current)
  60. #in fact, this is the diagonal element
  61. #get volume names
  62. srcVName=self.getVolumePar(src)
  63. #generate coupling object (w/derivatives)
  64. pSrc=self.couplingObject(-1,qName,pcName,srcVName)
  65. #this includes derivatives and value!
  66. self.addValueObject(src,src,pSrc)
  67. #special target which is not part of calculation
  68. if target=='dump':
  69. return
  70. #the target equation (where we add the current)
  71. #get volume names
  72. targetVName=self.getVolumePar(target)
  73. #generate coupling object
  74. pTarget=self.couplingObject(1,qName,pcName,targetVName)
  75. #equation is for target compartment, but binding for source
  76. self.addValueObject(target,src,pTarget)
  77. def addValueObject(self,targetName,srcName,cObject):
  78. #always binds equation id and a variable
  79. targetList=self.compartments[targetName]['targets']
  80. addValue(targetList,srcName,cObject["value"])
  81. der=cObject["derivatives"]
  82. for d in der:
  83. targetSE=self.getSEJ_comp(d,targetName)
  84. addValue(targetSE,srcName,der[d])
  85. def couplingObject(self,sign, qParName, pcParName, vParName):
  86. qPar=self.get(qParName)
  87. pcPar=self.get(pcParName)
  88. vPar=self.get(vParName)
  89. q=qPar['value']
  90. pc=pcPar['value']
  91. v=vPar['value']
  92. DPC=pcPar['derivatives']
  93. DQ=qPar['derivatives']
  94. DV=vPar['derivatives']
  95. if any(['function' in qPar,'function' in pcPar, 'function' in vPar]):
  96. fq=function.to(q)
  97. fpc=function.to(pc)
  98. fv=function.to(v)
  99. f=lambda t,q=fq,pc=fpc,v=fv,s=sign:s*q(t)/v(t)/pc(t)
  100. dfdPC=lambda t,f=f,pc=fpc:-f(t)/pc(t)
  101. dPC=function.generate(dfdPC,DPC)
  102. dfdQ=lambda t,f=f,q=fq: f(t)/q(t)
  103. dQ=function.generate(dfdQ,DQ)
  104. dfdV=lambda t,f=f,v=fv: -f(t)/v(t)
  105. dV=function.generate(dfdV,DV)
  106. return function.Object(f,[dPC,dQ,dV])
  107. else:
  108. f=sign*q/v/pc
  109. return function.derivedObject(sign*q/v/pc,\
  110. [{'df':-f/pc,'D':DPC},\
  111. {'df':sign/v/pc,'D':DQ},\
  112. {'df':-f/v,'D':DV}])
  113. #derivatives is the combination of the above
  114. def getVolumePar(self,compartment):
  115. #returnis volume name, if found and useVolume is directed,
  116. #or a standard parameter one
  117. try:
  118. return self.mod["volumes"][compartment]
  119. #parV=self.mod["parameters"][parVName]
  120. except KeyError:
  121. pass
  122. return "one"
  123. def build(self):
  124. comps=self.compartments
  125. self.n=len(comps)
  126. #numeric representation of the input
  127. self.fu=numpy.zeros((self.n))
  128. #dictionary that holds potential input function objects
  129. self.du={}
  130. self.lut={c:i for (i,c) in zip(range(self.n),comps.keys())}
  131. self.dM={}
  132. self.fM=numpy.zeros((self.n,self.n))
  133. self.inputDerivatives={}
  134. self.uTotal=[]
  135. for c in comps:
  136. comp=comps[c]
  137. if 'input' in comp:
  138. qs=self.get(comp['input'])
  139. self.uTotal.append(qs["value"])
  140. qV=self.getVolumePar(c)
  141. #input is a quotient (amount of exogen per unit time per volume(mass) of input compartment)
  142. qs1=function.ratio(qs,self.get(qV))
  143. if function.isFunction(qs1):
  144. self.du[self.lut[c]]=qs1
  145. else:
  146. self.fu[self.lut[c]]=qs1['value']
  147. #let buildSE know we have to include this derivatives
  148. self.inputDerivatives[c]=qs1['derivatives']
  149. for t in comp['targets']:
  150. arr=comp['targets'][t]
  151. if function.contains(arr):
  152. try:
  153. self.dM[self.lut[c]][self.lut[t]]=\
  154. function.sumArray(arr)
  155. except (KeyError,TypeError):
  156. self.dM[self.lut[c]]={}
  157. self.dM[self.lut[c]][self.lut[t]]=\
  158. function.sumArray(arr)
  159. else:
  160. #just set once
  161. self.fM[self.lut[c],self.lut[t]]=sum(arr)
  162. #generate total from self.uTotal
  163. #ignore derivatives; uTotal is just a scaling shorthand
  164. if function.contains(self.uTotal):
  165. self.du[self.lut['total']]=function.Object(function.sumArray(self.uTotal),[])
  166. else:
  167. self.fu[self.lut['total']]=sum(self.uTotal)
  168. #build SE part
  169. self.buildSE()
  170. def buildSE(self):
  171. #check which parameterst to include
  172. parList=[]
  173. pars=self.parSetup['parameters']
  174. #add derivatives to jacobi terms
  175. parCandidates=list(self.seJ.keys())
  176. #add derivatives of input terms
  177. for x in self.inputDerivatives:
  178. D=self.inputDerivatives[x]
  179. parCandidates.extend(list(D.keys()))
  180. for x in self.du:
  181. D=self.du[x]['derivatives']
  182. parCandidates.extend(list(D.keys()))
  183. #get rid of duplicates
  184. parCandidates=list(set(parCandidates))
  185. for parName in parCandidates:
  186. #print(par)
  187. par=pars[parName]
  188. usePar=calculateDerivative(par)
  189. #print('[{}]: {}'.format(usePar,par))
  190. if not usePar:
  191. continue
  192. parList.append(parName)
  193. #print(parList)
  194. self.m=len(parList)
  195. self.lutSE={c:i for (i,c) in zip(range(self.m),parList)}
  196. w=self.getWeights(self.lutSE)
  197. w=numpy.sqrt(w)
  198. self.qSS={}
  199. self.SS=numpy.zeros((self.m,self.n,self.n))
  200. #elements of SS will be w_p*dM_i,j/dp
  201. for parName in parList:
  202. try:
  203. sources=self.seJ[parName]
  204. except KeyError:
  205. continue
  206. for compartment in sources:
  207. targets=sources[compartment]
  208. for t in targets:
  209. k=self.lutSE[parName]
  210. i=self.lut[compartment]
  211. j=self.lut[t]
  212. #print('[{} {} {}] {}'.format(parName,compartment,t,targets[t]))
  213. arr=targets[t]
  214. if not function.contains(arr):
  215. self.SS[k,i,j]=w[k]*sum(arr)
  216. continue
  217. ft=function.sumArray(arr,w[k])
  218. try:
  219. self.qSS[k][i][j]=ft
  220. except (KeyError,TypeError):
  221. try:
  222. self.qSS[k][i]={}
  223. self.qSS[k][i][j]=ft
  224. except (KeyError,TypeError):
  225. self.qSS[k]={}
  226. self.qSS[k][i]={}
  227. self.qSS[k][i][j]=ft
  228. #derivatives of inputs
  229. #time dependent derivatives are handled in self.Su(t)
  230. self.fSu=numpy.zeros((self.m,self.n))
  231. for x in self.inputDerivatives:
  232. D=self.inputDerivatives[x]
  233. for p in D:
  234. if p in parList:
  235. k=self.lutSE[p]
  236. self.fSu[self.lutSE[p],self.lut[x]]=D[p]*w[k]
  237. #use fM to build static part of fJ
  238. N=self.n*(self.m+1)
  239. self.fJ=numpy.zeros((N,N))
  240. for i in range(self.m+1):
  241. self.fJ[i*self.n:(i+1)*self.n,i*self.n:(i+1)*self.n]=self.fM
  242. def inspect(self):
  243. comps=self.compartments
  244. pars=self.parSetup['parameters']
  245. #pars=self.mod['parameters']
  246. tu=self.getTimeUnit()
  247. print('Time unit: {}'.format(tu))
  248. print('Compartments')
  249. for c in comps:
  250. print('{}/{}:'.format(c,self.lut[c]))
  251. comp=comps[c]
  252. if 'input' in comp:
  253. print('\tinput\n\t\t{}'.format(comp['input']))
  254. print('\ttargets')
  255. for t in comp['targets']:
  256. print('\t\t{}[{},{}]: {}'.format(t,self.lut[c],self.lut[t],\
  257. comp['targets'][t]))
  258. print('Flows')
  259. for f in self.flows:
  260. fName=self.flows[f]
  261. fParName=self.mod['flows'][fName]
  262. fPar=pars[fParName]
  263. print('\t{}[{}]:{} [{}]'.format(f,fName,fParName,self.get(fParName)))
  264. print('Volumes')
  265. for v in self.mod['volumes']:
  266. vParName=self.mod['volumes'][v]
  267. vPar=pars[vParName]
  268. print('\t{}:{} [{}]'.format(v,vParName,self.get(vParName)))
  269. print('Partition coefficients')
  270. for pc in self.mod['partitionCoefficients']:
  271. pcParName=self.mod['partitionCoefficients'][pc]
  272. pcPar=pars[pcParName]
  273. print('\t{}:{} [{}]'.format(pc,pcParName,self.get(pcParName)))
  274. def inspectSE(self):
  275. print('SE parameters')
  276. for p in self.seJ:
  277. print(p)
  278. sources=self.seJ[p]
  279. for compartment in sources:
  280. targets=sources[compartment]
  281. for t in targets:
  282. print('\t SE bind {}/{}:{}'.format(compartment,t,targets[t]))
  283. def parse(self,setupFile,parameterFile):
  284. with open(setupFile,'r') as f:
  285. self.mod=json.load(f)
  286. with open(parameterFile,'r') as f:
  287. self.parSetup=json.load(f)
  288. self.mod['compartments'].append('total')
  289. for m in self.mod['compartments']:
  290. self.add_compartment(m)
  291. for m in self.mod['scaled']:
  292. self.scaled.append(m)
  293. self.add_default_parameters()
  294. self.applyValues()
  295. def clearCompartments(self):
  296. for c in self.compartments:
  297. for t in self.compartments[c]:
  298. self.compartments[c][t]={}
  299. def applyValues(self):
  300. self.clearCompartments()
  301. #print(self.compartments)
  302. #standard parameters such as one,zero etc.
  303. for s in self.mod['inputs']:
  304. #src=mod['inputs'][s]
  305. self.add_input(s,self.mod['inputs'][s])
  306. self.flows={}
  307. #pars=self.mod['parameters']
  308. pars=self.parSetup['parameters']
  309. for f in self.mod['flows']:
  310. #skip comments
  311. if f.find(':')<0:
  312. continue
  313. comps=f.split(':')
  314. c0=splitVector(comps[0])
  315. c1=splitVector(comps[1])
  316. for x in c0:
  317. for y in c1:
  318. pairName='{}:{}'.format(x,y)
  319. self.flows[pairName]=f
  320. for b in self.mod['bindings']['diffusion']:
  321. #whether to scale transfer constants to organ volume
  322. #default is true, but changing here will assume no scaling
  323. comps=b.split('->')
  324. try:
  325. pcParName=self.mod['partitionCoefficients'][b]
  326. except KeyError:
  327. pcParName="one"
  328. kParName=self.mod['bindings']['diffusion'][b]
  329. #operate with names to allow for value/function/derived infrastructure
  330. self.bind(comps[0],comps[1],kParName,pcParName)
  331. for q in self.mod['bindings']['flow']:
  332. comps=q.split('->')
  333. srcs=splitVector(comps[0])
  334. tgts=splitVector(comps[1])
  335. for cs in srcs:
  336. for ct in tgts:
  337. #get partition coefficient
  338. try:
  339. pcParName=self.mod['partitionCoefficients'][cs]
  340. except KeyError:
  341. pcParName="one"
  342. #get flow (direction could be reversed)
  343. try:
  344. qName=self.flows['{}:{}'.format(cs,ct)]
  345. except KeyError:
  346. qName=self.flows['{}:{}'.format(ct,cs)]
  347. flowParName=self.mod['flows'][qName]
  348. #flowPar=pars[flowParName]
  349. self.bind(cs,ct,flowParName,pcParName)
  350. self.build()
  351. def add_default_parameters(self):
  352. pars=self.parSetup['parameters']
  353. pars['one']={'value':1}
  354. pars['zero']={'value':0}
  355. pars['two']={'value':2}
  356. def M(self,t,y=numpy.array([])):
  357. for i in self.dM:
  358. for j in self.dM[i]:
  359. self.fM[i,j]=self.dM[i][j](t)
  360. #create an array and fill it with outputs of function at t
  361. if (y.size==0):
  362. return self.fM
  363. self.set_scaledM(t,y)
  364. return self.fM
  365. def set_scaledM(self,t,y):
  366. #prevent zero division
  367. eps=1e-8
  368. for c in self.scaled:
  369. i=self.lut[c]
  370. it=self.lut['total']
  371. try:
  372. k=numpy.copy(self.originalK[i])
  373. except AttributeError:
  374. k=numpy.copy(self.fM[i,:])
  375. self.originalK={}
  376. self.originalK[i]=k
  377. #make another copy
  378. k=numpy.copy(self.originalK[i])
  379. except KeyError:
  380. k=numpy.copy(self.fM[i,:])
  381. self.originalK[i]=k
  382. #make another copy
  383. k=numpy.copy(self.originalK[i])
  384. k[i]=k[i]-self.u(t)[it]
  385. #scale all inputs by total input mass
  386. for j in range(self.n):
  387. self.fM[i,j]=k[j]/(y[it]+eps)
  388. def u(self,t):
  389. for x in self.du:
  390. self.fu[x]=self.du[x]['value'](t)
  391. #this should be done previously
  392. return self.fu
  393. def Su(self,t):
  394. w=self.getWeights(self.lutSE)
  395. w=numpy.sqrt(w)
  396. #add time dependent values
  397. for x in self.du:
  398. D=self.du[x]['derivatives']
  399. for p in D:
  400. k=self.lutSE[p]
  401. #print(f'[{p}]: {k}')
  402. self.fSu[k,x]=w[k]*D[p](t)
  403. return self.fSu
  404. def jacobiFull(self,t):
  405. #update jacobi created during build phase with time dependent values
  406. for i in self.dM:
  407. for j in self.dM[i]:
  408. for k in range(self.m+1):
  409. self.fJ[k*self.n+i,k*self.n+j]=self.dM[i][j](t)
  410. return self.fJ
  411. def fSS(self,t,y=numpy.array([])):
  412. for k in self.qSS:
  413. for i in self.qSS[k]:
  414. for j in self.qSS[k][i]:
  415. #print('[{},{},{}] {}'.format(k,i,j,self.qSS[k][i][j]))
  416. self.SS[k,i,j]=(self.qSS[k][i][j])(t)
  417. if y.size==0:
  418. return self.SS
  419. self.set_scaledSS(t,y)
  420. return self.SS
  421. def set_scaledSS(self,t,y):
  422. #prevent zero division
  423. eps=1e-8
  424. for c in self.scaled:
  425. it=self.lut['total']
  426. i=self.lut[c]
  427. try:
  428. dkdp=numpy.copy(self.originalSS[i])
  429. except AttributeError:
  430. dkdp=numpy.copy(self.SS[:,i,:])
  431. self.originalSS={}
  432. self.originalSS[i]=dkdp
  433. dkdp=numpy.copy(self.originalSS[i])
  434. except KeyError:
  435. dkdp=numpy.copy(self.SS[:,i,:])
  436. self.originalSS[i]=dkdp
  437. dkdp=numpy.copy(self.originalSS[i])
  438. self.SS[:,i,:]=dkdp/(y[it]+eps)
  439. #should add error on u!
  440. def fSY(self,y,t):
  441. #M number of sensitivity parameters
  442. #N number of equations
  443. #fSS is MxNxN
  444. #assume a tabulated solution y(t) at t spaced intervals
  445. qS=self.fSS(t,y).dot(y)
  446. #qS is MxN
  447. #but NxM is expected, so do a transpose
  448. #for simultaneous calculation, a Nx(M+1) matrix is expected
  449. tS=numpy.zeros((self.n,self.m+1))
  450. #columns from 2..M+1 are the partial derivatives
  451. tS[:,1:]=numpy.transpose(qS)
  452. #first column is the original function
  453. tS[:,0]=self.u(t)
  454. return tS
  455. def fS(self,t):
  456. #M number of sensitivity parameters
  457. #N number of equations
  458. #fSS is MxNxN
  459. #assume a tabulated solution y(t) at t spaced intervals
  460. qS=self.fSS(t).dot(self.getY(t))
  461. return numpy.transpose(qS)
  462. def getSEJ(self,parName):
  463. #find the sensitivity (SE) derivative of Jacobi with
  464. #respect to parameter
  465. try:
  466. return self.seJ[parName]
  467. except KeyError:
  468. self.seJ[parName]={}
  469. return self.seJ[parName]
  470. def getSEJ_comp(self,parName,compartmentName):
  471. #find equation dictating concentration in compartmentName
  472. #for jacobi-parameter derivative
  473. seJ=self.getSEJ(parName)
  474. try:
  475. return seJ[compartmentName]
  476. except KeyError:
  477. seJ[compartmentName]={}
  478. return seJ[compartmentName]
  479. def setY(self,t,y):
  480. self.tck=[None]*self.n
  481. for i in range(self.n):
  482. self.tck[i] = scipy.interpolate.splrep(t, y[:,i], s=0)
  483. def getY(self,t):
  484. fY=numpy.zeros(self.n)
  485. for i in range(self.n):
  486. fY[i]=scipy.interpolate.splev(t, self.tck[i], der=0)
  487. return fY
  488. def getWeight(self,parName):
  489. pars=self.parSetup['parameters']
  490. par=pars[parName]
  491. #self.get parses the units
  492. v=self.get(parName)["value"]
  493. #if par['dist']=='lognormal':
  494. #this is sigma^2_lnx
  495. #sln2=numpy.log(par["cv"]*par["cv"]+1)
  496. #have to multiplied by value to get the derivative
  497. #with respect to lnx
  498. #return sln2*v*v
  499. #else:
  500. #for Gaussian, cv is sigma/value; get sigma by value multiplication
  501. try:
  502. return par["cv"]*par["cv"]*v*v
  503. except KeyError:
  504. return 0
  505. def getMax(lutSE):
  506. fm=-1
  507. for x in lutSE:
  508. if int(lutSE[x])>fm:
  509. fm=lutSE[x]
  510. return fm
  511. def getWeights(self,lutSE):
  512. #pars=self.parSetup['parameters']
  513. wts=numpy.zeros((model.getMax(lutSE)+1))
  514. for parName in lutSE:
  515. j=lutSE[parName]
  516. wts[j]=self.getWeight(parName)
  517. return wts
  518. def getVolumes(self):
  519. m=numpy.zeros((len(self.lut)))
  520. for p in self.lut:
  521. m[self.lut[p]]=self.getVolume(p)
  522. return m
  523. def getVolume(self,p):
  524. pV=self.getVolumePar(p)
  525. return self.get(pV)['value']
  526. def getDerivatives(self,se,i):
  527. #return latest point derivatives
  528. fse=se[-1][i]
  529. #fse is an m-vector
  530. return fse*fse
  531. def calculateUncertainty(self,s):
  532. #s2out=numpy.zeros(s1.shape[1:])
  533. s2=numpy.multiply(s,s)
  534. #w=self.getWeights(self.lutSE)
  535. w=numpy.ones((self.m))
  536. return numpy.sqrt(numpy.dot(s2,w))
  537. def setValue(self, parName, parValue):
  538. #change a single parameter parName to value parValue
  539. #should run applyValues after all values are set
  540. pars=self.parSetup['parameters']
  541. try:
  542. par=pars[parName]
  543. except:
  544. print(f'Failed to find parameter {parName}')
  545. return False
  546. try:
  547. par['value']=parValue
  548. except KeyError:
  549. print(f'Failed to set value for {parName}')
  550. return False
  551. return True
  552. def setValues(self,parNames,parValues):
  553. #change a set of parameters in list parNames to
  554. #accordingly ordered set of values parValues
  555. #also recalculates the matrix
  556. for p,v in zip(parNames,parValues):
  557. self.setValue(p,v)
  558. self.applyValues()
  559. def get(self,parName):
  560. pars=self.parSetup['parameters']
  561. par=pars[parName]
  562. par['name']=parName
  563. if "value" in par:
  564. return self.getValue(par)
  565. if "function" in par:
  566. return self.getFunction(par)
  567. if "derived" in par:
  568. return self.getDerived(par)
  569. print('Paramter {} not found!'.format(parName))
  570. def getValue(self,par):
  571. v=par["value"]
  572. parName=par['name']
  573. #convert to seconds
  574. try:
  575. parUnits=par['unit'].split('/')
  576. except (KeyError,IndexError):
  577. #no unit given
  578. return valueObject(v,parName)
  579. timeUnit=self.getTimeUnit()
  580. try:
  581. if parUnits[1]==timeUnit:
  582. return valueObject(v,parName)
  583. except IndexError:
  584. #no / in unit name
  585. return valueObject(v,parName)
  586. if parUnits[1]=='min' and timeUnit=='s':
  587. return valueObject(v/60,parName)
  588. if parUnits[1]=='s' and timeUnit=='min':
  589. return valueObject(60*v,parName)
  590. if parUnits[1]=='day' and timeUnit=='min':
  591. return valueObject(v/24/60,parName)
  592. if parUnits[1]=='hour' and timeUnit=='min':
  593. return valueObject(v/60,parName)
  594. #no idea what to do
  595. return valueObject(v,parName)
  596. def getFunction(self,par):
  597. fName=par['function']
  598. #print('[{}]: getFunction({})'.format(par['name'],par['function']))
  599. df=self.parSetup['functions'][fName]
  600. skip=['type']
  601. par1={x:self.get(df[x]) for x in df if x not in skip}
  602. if df['type']=='linearGrowth':
  603. #print(par1)
  604. return function.linearGrowth(par1)
  605. if df['type']=='linearGrowthFixedSlope':
  606. return function.linearGrowthFixedSlope(par1)
  607. if df['type']=='exp':
  608. return function.exp(par1)
  609. print('Function {}/{} not found!'.format(fName,df))
  610. def getDerived(self,par):
  611. dName=par['derived']
  612. d=self.parSetup['derivedParameters'][dName]
  613. #print('Derived [{}]: type {}'.format(dName,d['type']))
  614. if d['type']=='product':
  615. return function.product(self.get(d['a']),self.get(d['b']))
  616. if d['type']=='power':
  617. return function.power(self.get(d['a']),self.get(d['n']))
  618. if d['type']=='ratio':
  619. return function.ratio(pA=self.get(d['a']),pB=self.get(d['b']))
  620. if d['type']=='sum':
  621. return function.add(pA=self.get(d['a']),pB=self.get(d['b']))
  622. def calculateDerivative(par):
  623. #add derivatives if dist(short for distribution) is specified
  624. return "dist" in par
  625. def valueObject(v,parName):
  626. #convert everything to functions
  627. d0={parName:1}
  628. return {'value':v,'derivatives':{parName:1}}
  629. def splitVector(v):
  630. if v.find('(')<0:
  631. return [v]
  632. return v[1:-1].split(',')
  633. def addValue(qdict,compName,v):
  634. #add function to compName of dictionary qdict,
  635. #check if compName exists and handle the potential error
  636. #lambda functions can't be summed directly, so qdict is a list
  637. #that will be merged at matrix generation time
  638. try:
  639. qdict[compName].append(v)
  640. except KeyError:
  641. qdict[compName]=[v]
  642. #also add derivatives
  643. #
  644. # for d in dTarget:
  645. # ctarget=self.getSEJ_comp(d,target)
  646. # addValue(ctarget,target,dTarget[d])
  647. def get(timeUnit,par):
  648. v=par["value"]
  649. #convert to seconds
  650. try:
  651. parUnits=par['unit'].split('/')
  652. except (KeyError,IndexError):
  653. #no unit given
  654. return v
  655. try:
  656. if parUnits[1]==timeUnit:
  657. return v
  658. except IndexError:
  659. #no / in unit name
  660. return v
  661. if parUnits[1]=='min' and timeUnit=='s':
  662. return v/60
  663. if parUnits[1]=='s' and timeUnit=='min':
  664. return 60*v
  665. #no idea what to do
  666. return v