cModel.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764
  1. import numpy
  2. import json
  3. import os
  4. import scipy.interpolate
  5. #for partial function specializations
  6. import functools
  7. import function
  8. import importlib
  9. importlib.reload(function)
  10. class model:
  11. def __init__(self):
  12. self.compartments={}
  13. self.seJ={}
  14. self.scaled=[]
  15. def add_source(self,compartmentName,formula):
  16. self.compartments[compartmentName]['source']=formula
  17. def add_compartment(self,compartmentName):
  18. self.compartments[compartmentName]={}
  19. self.compartments[compartmentName]['targets']={}
  20. self.compartments[compartmentName]['sensTargets']={}
  21. def getTimeUnit(self):
  22. try:
  23. return self.mod['timeUnit']
  24. except KeyError:
  25. return 's'
  26. def bind(self,src,target,qName,pcName,useVolume=0):
  27. #establish a flow from source compartment to the target
  28. #the source equation (where we subtract the current)
  29. #in fact, this is the diagonal element
  30. #get volume names
  31. srcVName=self.getVolumePar(src,useVolume)
  32. #generate coupling object (w/derivatives)
  33. pSrc=self.couplingObject(-1,qName,pcName,srcVName)
  34. #this includes derivatives and value!
  35. self.addValueObject(src,src,pSrc)
  36. #special target which is not part of calculation
  37. if target=='dump':
  38. return
  39. #the target equation (where we add the current)
  40. #get volume names
  41. targetVName=self.getVolumePar(target,useVolume)
  42. #generate coupling object
  43. pTarget=self.couplingObject(1,qName,pcName,targetVName)
  44. #equation is for target compartment, but binding for source
  45. self.addValueObject(target,src,pTarget)
  46. def addValueObject(self,targetName,srcName,cObject):
  47. #always binds equation id and a variable
  48. targetList=self.compartments[targetName]['targets']
  49. addValue(targetList,srcName,cObject["value"])
  50. der=cObject["derivatives"]
  51. for d in der:
  52. targetSE=self.getSEJ_comp(d,targetName)
  53. addValue(targetSE,srcName,der[d])
  54. def couplingObject(self,sign, qParName, pcParName, vParName):
  55. qPar=self.get(qParName)
  56. pcPar=self.get(pcParName)
  57. vPar=self.get(vParName)
  58. q=qPar['value']
  59. pc=pcPar['value']
  60. v=vPar['value']
  61. DPC=pcPar['derivatives']
  62. DQ=qPar['derivatives']
  63. DV=vPar['derivatives']
  64. if any(['function' in qPar,'function' in pcPar, 'function' in vPar]):
  65. fq=function.to(q)
  66. fpc=function.to(pc)
  67. fv=function.to(v)
  68. f=lambda t,q=fq,pc=fpc,v=fv,s=sign:s*q(t)/v(t)/pc(t)
  69. dfdPC=lambda t,f=f,pc=fpc:-f(t)/pc(t)
  70. dPC=function.generate(dfdPC,DPC)
  71. dfdQ=lambda t,f=f,q=fq: f(t)/q(t)
  72. dQ=function.generate(dfdQ,DQ)
  73. dfdV=lambda t,f=f,v=fv: -f(t)/v(t)
  74. dV=function.generate(dfdV,DV)
  75. return function.Object(f,[dPC,dQ,dV])
  76. else:
  77. f=sign*q/v/pc
  78. return derivedObject(sign*q/v/pc,\
  79. [{'df':-f/pc,'D':DPC},\
  80. {'df':sign/v/pc,'D':DQ},\
  81. {'df':-f/v,'D':DV}])
  82. #derivatives is the combination of the above
  83. def getVolumePar(self,compartment,useVolume=1):
  84. #returnis volume name, if found and useVolume is directed,
  85. #or a standard parameter one
  86. if not useVolume:
  87. return "one"
  88. try:
  89. return self.mod["volumes"][compartment]
  90. #parV=self.mod["parameters"][parVName]
  91. except KeyError:
  92. pass
  93. return "one"
  94. def build(self):
  95. comps=self.compartments
  96. self.n=len(comps)
  97. self.fu=[lambda t:0]*self.n
  98. self.lut={c:i for (i,c) in zip(range(self.n),comps.keys())}
  99. self.dM={}
  100. self.fM=numpy.zeros((self.n,self.n))
  101. for c in comps:
  102. comp=comps[c]
  103. if 'source' in comp:
  104. self.fu[self.lut[c]]=parseFunction(comp['source'])
  105. for t in comp['targets']:
  106. arr=comp['targets'][t]
  107. if function.contains(arr):
  108. try:
  109. self.dM[self.lut[c]][self.lut[t]]=\
  110. function.sumArray(arr)
  111. except (KeyError,TypeError):
  112. self.dM[self.lut[c]]={}
  113. self.dM[self.lut[c]][self.lut[t]]=\
  114. function.sumArray(arr)
  115. else:
  116. #just set once
  117. self.fM[self.lut[c],self.lut[t]]=sum(arr)
  118. #build SE part
  119. self.buildSE()
  120. def buildSE(self):
  121. #check which parameterst to include
  122. parList=[]
  123. pars=self.parSetup['parameters']
  124. for parName in self.seJ:
  125. #print(par)
  126. par=pars[parName]
  127. usePar=calculateDerivative(par)
  128. #print('[{}]: {}'.format(usePar,par))
  129. if not usePar:
  130. continue
  131. parList.append(parName)
  132. #print(parList)
  133. self.m=len(parList)
  134. self.lutSE={c:i for (i,c) in zip(range(self.m),parList)}
  135. w=self.getWeights(self.lutSE)
  136. w=numpy.sqrt(w)
  137. self.qSS={}
  138. self.SS=numpy.zeros((self.m,self.n,self.n))
  139. for parName in parList:
  140. sources=self.seJ[parName]
  141. for compartment in sources:
  142. targets=sources[compartment]
  143. for t in targets:
  144. k=self.lutSE[parName]
  145. i=self.lut[compartment]
  146. j=self.lut[t]
  147. #print('[{} {} {}] {}'.format(parName,compartment,t,targets[t]))
  148. arr=targets[t]
  149. if not function.contains(arr):
  150. self.SS[k,i,j]=w[k]*sum(arr)
  151. continue
  152. ft=function.sumArray(arr,w[k])
  153. try:
  154. self.qSS[k][i][j]=ft
  155. except (KeyError,TypeError):
  156. try:
  157. self.qSS[k][i]={}
  158. self.qSS[k][i][j]=ft
  159. except (KeyError,TypeError):
  160. self.qSS[k]={}
  161. self.qSS[k][i]={}
  162. self.qSS[k][i][j]=ft
  163. #use fM to build static part of fJ
  164. N=self.n*(self.m+1)
  165. self.fJ=numpy.zeros((N,N))
  166. for i in range(self.m+1):
  167. self.fJ[i*self.n:(i+1)*self.n,i*self.n:(i+1)*self.n]=self.fM
  168. def inspect(self):
  169. comps=self.compartments
  170. pars=self.parSetup['parameters']
  171. #pars=self.mod['parameters']
  172. tu=self.getTimeUnit()
  173. print('Time unit: {}'.format(tu))
  174. print('Compartments')
  175. for c in comps:
  176. print('{}/{}:'.format(c,self.lut[c]))
  177. comp=comps[c]
  178. if 'source' in comp:
  179. print('\tsource\n\t\t{}'.format(comp['source']))
  180. print('\ttargets')
  181. for t in comp['targets']:
  182. print('\t\t{}[{},{}]: {}'.format(t,self.lut[c],self.lut[t],\
  183. comp['targets'][t]))
  184. print('Flows')
  185. for f in self.flows:
  186. fName=self.flows[f]
  187. fParName=self.mod['flows'][fName]
  188. fPar=pars[fParName]
  189. print('\t{}[{}]:{} [{}]'.format(f,fName,fParName,self.get(fParName)))
  190. print('Volumes')
  191. for v in self.mod['volumes']:
  192. vParName=self.mod['volumes'][v]
  193. vPar=pars[vParName]
  194. print('\t{}:{} [{}]'.format(v,vParName,self.get(vParName)))
  195. print('Partition coefficients')
  196. for pc in self.mod['partitionCoefficients']:
  197. pcParName=self.mod['partitionCoefficients'][pc]
  198. pcPar=pars[pcParName]
  199. print('\t{}:{} [{}]'.format(pc,pcParName,self.get(pcParName)))
  200. def inspectSE(self):
  201. print('SE parameters')
  202. for p in self.seJ:
  203. print(p)
  204. sources=self.seJ[p]
  205. for compartment in sources:
  206. targets=sources[compartment]
  207. for t in targets:
  208. print('\t SE bind {}/{}:{}'.format(compartment,t,targets[t]))
  209. def parse(self,setupFile,parameterFile):
  210. with open(setupFile,'r') as f:
  211. self.mod=json.load(f)
  212. with open(parameterFile,'r') as f:
  213. self.parSetup=json.load(f)
  214. self.mod['compartments'].append('total')
  215. for m in self.mod['compartments']:
  216. self.add_compartment(m)
  217. for m in self.mod['scaled']:
  218. self.scaled.append(m)
  219. self.add_default_parameters()
  220. #standard parameters such as one,zero etc.
  221. for s in self.mod['sources']:
  222. #src=mod['sources'][s]
  223. self.add_source(s,self.mod['sources'][s])
  224. self.flows={}
  225. #pars=self.mod['parameters']
  226. pars=self.parSetup['parameters']
  227. for f in self.mod['flows']:
  228. #skip comments
  229. if f.find(':')<0:
  230. continue
  231. comps=f.split(':')
  232. c0=splitVector(comps[0])
  233. c1=splitVector(comps[1])
  234. for x in c0:
  235. for y in c1:
  236. pairName='{}:{}'.format(x,y)
  237. self.flows[pairName]=f
  238. for b in self.mod['bindings']['diffusion']:
  239. #whether to scale transfer constants to organ volume
  240. #default is true, but changing here will assume no scaling
  241. useVolume=1
  242. comps=b.split('->')
  243. try:
  244. pcParName=self.mod['partitionCoefficients'][b]
  245. except KeyError:
  246. pcParName="one"
  247. kParName=self.mod['bindings']['diffusion'][b]
  248. #operate with names to allow for value/function/derived infrastructure
  249. self.bind(comps[0],comps[1],kParName,pcParName,useVolume)
  250. for q in self.mod['bindings']['flow']:
  251. comps=q.split('->')
  252. srcs=splitVector(comps[0])
  253. tgts=splitVector(comps[1])
  254. for cs in srcs:
  255. for ct in tgts:
  256. #get partition coefficient
  257. try:
  258. pcParName=self.mod['partitionCoefficients'][cs]
  259. except KeyError:
  260. pcParName="one"
  261. #get flow (direction could be reversed)
  262. try:
  263. qName=self.flows['{}:{}'.format(cs,ct)]
  264. except KeyError:
  265. qName=self.flows['{}:{}'.format(ct,cs)]
  266. flowParName=self.mod['flows'][qName]
  267. #flowPar=pars[flowParName]
  268. self.bind(cs,ct,flowParName,pcParName,1)
  269. self.build()
  270. def add_default_parameters(self):
  271. pars=self.parSetup['parameters']
  272. pars['one']={'value':1}
  273. pars['zero']={'value':0}
  274. def M(self,t,y=numpy.array([])):
  275. for i in self.dM:
  276. for j in self.dM[i]:
  277. self.fM[i,j]=self.dM[i][j](t)
  278. #create an array and fill it with outputs of function at t
  279. if (y.size==0):
  280. return self.fM
  281. self.set_scaledM(t,y)
  282. return self.fM
  283. def set_scaledM(self,t,y):
  284. #prevent zero division
  285. eps=1e-8
  286. for c in self.scaled:
  287. i=self.lut[c]
  288. it=self.lut['total']
  289. try:
  290. k=numpy.copy(self.originalK[i])
  291. except AttributeError:
  292. k=numpy.copy(self.fM[i,:])
  293. self.originalK={}
  294. self.originalK[i]=k
  295. #make another copy
  296. k=numpy.copy(self.originalK[i])
  297. except KeyError:
  298. k=numpy.copy(self.fM[i,:])
  299. self.originalK[i]=k
  300. #make another copy
  301. k=numpy.copy(self.originalK[i])
  302. k[i]=k[i]-self.u(t)[it]
  303. #scale all inputs by total input mass
  304. for j in range(self.n):
  305. self.fM[i,j]=k[j]/(y[it]+eps)
  306. def u(self,t):
  307. ub=[f(t) for f in self.fu]
  308. ub[self.lut['total']]=sum(ub)
  309. return numpy.array(ub)
  310. def jacobiFull(self,t):
  311. #update jacobi created during build phase with time dependent values
  312. for i in self.dM:
  313. for j in self.dM[i]:
  314. for k in range(system.m+1):
  315. self.fJ[k*system.n+i,k*system.n+j]=self.dM[i][j](t)
  316. return self.fJ
  317. def fSS(self,t,y=numpy.array([])):
  318. for k in self.qSS:
  319. for i in self.qSS[k]:
  320. for j in self.qSS[k][i]:
  321. #print('[{},{},{}] {}'.format(k,i,j,self.qSS[k][i][j]))
  322. self.SS[k,i,j]=(self.qSS[k][i][j])(t)
  323. if y.size==0:
  324. return self.SS
  325. self.set_scaledSS(t,y)
  326. return self.SS
  327. def set_scaledSS(self,t,y):
  328. #prevent zero division
  329. eps=1e-8
  330. for c in self.scaled:
  331. it=self.lut['total']
  332. i=self.lut[c]
  333. try:
  334. dkdp=numpy.copy(self.originalSS[i])
  335. except AttributeError:
  336. dkdp=numpy.copy(self.SS[:,i,:])
  337. self.originalSS={}
  338. self.originalSS[i]=dkdp
  339. dkdp=numpy.copy(self.originalSS[i])
  340. except KeyError:
  341. dkdp=numpy.copy(self.SS[:,i,:])
  342. self.originalSS[i]=dkdp
  343. dkdp=numpy.copy(self.originalSS[i])
  344. self.SS[:,i,:]=dkdp/(y[it]+eps)
  345. #should add error on u!
  346. def fSY(self,y,t):
  347. #M number of sensitivity parameters
  348. #N number of equations
  349. #fSS is MxNxN
  350. #assume a tabulated solution y(t) at t spaced intervals
  351. qS=self.fSS(t,y).dot(y)
  352. #qS is MxN
  353. #but NxM is expected, so do a transpose
  354. #for simultaneous calculation, a Nx(M+1) matrix is expected
  355. tS=numpy.zeros((self.n,self.m+1))
  356. #columns from 2..M+1 are the partial derivatives
  357. tS[:,1:]=numpy.transpose(qS)
  358. #first column is the original function
  359. tS[:,0]=self.u(t)
  360. return tS
  361. def fS(self,t):
  362. #M number of sensitivity parameters
  363. #N number of equations
  364. #fSS is MxNxN
  365. #assume a tabulated solution y(t) at t spaced intervals
  366. qS=self.fSS(t).dot(self.getY(t))
  367. return numpy.transpose(qS)
  368. def getSEJ(self,parName):
  369. #find the sensitivity (SE) derivative of Jacobi with
  370. #respect to parameter
  371. try:
  372. return self.seJ[parName]
  373. except KeyError:
  374. self.seJ[parName]={}
  375. return self.seJ[parName]
  376. def getSEJ_comp(self,parName,compartmentName):
  377. #find equation dictating concentration in compartmentName
  378. #for jacobi-parameter derivative
  379. seJ=self.getSEJ(parName)
  380. try:
  381. return seJ[compartmentName]
  382. except KeyError:
  383. seJ[compartmentName]={}
  384. return seJ[compartmentName]
  385. def setY(self,t,y):
  386. self.tck=[None]*self.n
  387. for i in range(self.n):
  388. self.tck[i] = scipy.interpolate.splrep(t, y[:,i], s=0)
  389. def getY(self,t):
  390. fY=numpy.zeros(self.n)
  391. for i in range(self.n):
  392. fY[i]=scipy.interpolate.splev(t, self.tck[i], der=0)
  393. return fY
  394. def getWeight(self,parName):
  395. pars=self.parSetup['parameters']
  396. par=pars[parName]
  397. #self.get parses the units
  398. v=self.get(parName)["value"]
  399. if par['dist']=='lognormal':
  400. #this is sigma^2_lnx
  401. sln2=numpy.log(par["cv"]*par["cv"]+1)
  402. #have to multiplied by value to get the derivative
  403. #with respect to lnx
  404. return sln2*v*v
  405. else:
  406. #for Gaussian, cv is sigma/value; get sigma by value multiplication
  407. return par["cv"]*par["cv"]*v*v
  408. def getMax(lutSE):
  409. fm=-1
  410. for x in lutSE:
  411. if int(lutSE[x])>fm:
  412. fm=lutSE[x]
  413. return fm
  414. def getWeights(self,lutSE):
  415. #pars=self.parSetup['parameters']
  416. wts=numpy.zeros((model.getMax(lutSE)+1))
  417. for parName in lutSE:
  418. j=lutSE[parName]
  419. wts[j]=self.getWeight(parName)
  420. return wts
  421. def getDerivatives(self,se,i):
  422. #return latest point derivatives
  423. fse=se[-1][i]
  424. #fse is an m-vector
  425. return fse*fse
  426. def calculateUncertainty(self,se):
  427. s2out=numpy.zeros(se.shape[1:])
  428. se2=numpy.multiply(se,se)
  429. #w=self.getWeights(self.lutSE)
  430. w=numpy.ones((self.m))
  431. return numpy.sqrt(numpy.dot(se2,w))
  432. def get(self,parName):
  433. pars=self.parSetup['parameters']
  434. par=pars[parName]
  435. par['name']=parName
  436. if "value" in par:
  437. return self.getValue(par)
  438. if "function" in par:
  439. return self.getFunction(par)
  440. if "derived" in par:
  441. return self.getDerived(par)
  442. print('Paramter {} not found!'.format(parName))
  443. def getValue(self,par):
  444. v=par["value"]
  445. parName=par['name']
  446. #convert to seconds
  447. try:
  448. parUnits=par['unit'].split('/')
  449. except (KeyError,IndexError):
  450. #no unit given
  451. return valueObject(v,parName)
  452. timeUnit=self.getTimeUnit()
  453. try:
  454. if parUnits[1]==timeUnit:
  455. return valueObject(v,parName)
  456. except IndexError:
  457. #no / in unit name
  458. return valueObject(v,parName)
  459. if parUnits[1]=='min' and timeUnit=='s':
  460. return valueObject(v/60,parName)
  461. if parUnits[1]=='s' and timeUnit=='min':
  462. return valueObject(60*v,parName)
  463. if parUnits[1]=='day' and timeUnit=='min':
  464. return valueObject(v/24/60,parName)
  465. if parUnits[1]=='hour' and timeUnit=='min':
  466. return valueObject(v/60,parName)
  467. #no idea what to do
  468. return valueObject(v,parName)
  469. def getFunction(self,par):
  470. fName=par['function']
  471. #print('[{}]: getFunction({})'.format(par['name'],par['function']))
  472. df=self.parSetup['functions'][fName]
  473. skip=['type']
  474. par1={x:self.get(df[x]) for x in df if x not in skip}
  475. if df['type']=='linearGrowth':
  476. #print(par1)
  477. return function.linearGrowth(par1)
  478. if df['type']=='linearGrowthFixedSlope':
  479. return function.linearGrowthFixedSlope(par1)
  480. print('Function {} not found!'.format(fName))
  481. def getDerived(self,par):
  482. dName=par['derived']
  483. d=self.parSetup['derivedParameters'][dName]
  484. #print('Derived [{}]: type {}'.format(dName,d['type']))
  485. if d['type']=='product':
  486. #print('{}*{}'.format(d['a'],d['b']))
  487. pA=self.get(d['a'])
  488. a=pA['value']
  489. DA=pA['derivatives']
  490. pB=self.get(d['b'])
  491. b=pB['value']
  492. DB=pB['derivatives']
  493. #even more generic -> df/dp=[df/dA*dA/dp+df/dB*dB/dp]
  494. if any(['function' in pA,'function' in pB]):
  495. fa=function.to(a)
  496. fb=function.to(b)
  497. f=lambda t,a=fa,b=fb:a(t)*b(t)
  498. dfdA=lambda t,b=fb: b(t)
  499. dfdB=lambda t,a=fa: a(t)
  500. dA=function.generate(dfdA,DA)
  501. dB=function.generate(dfdB,DB)
  502. return function.Object(f,[dA,dB])
  503. else:
  504. return derivedObject(a*b,[{'df':b,'D':DA},{'df':a,'D':DB}])
  505. if d['type']=='power':
  506. #print('{}^{}'.format(d['a'],d['n']))
  507. pA=self.get(d['a'])
  508. a=pA['value']
  509. DA=pA['derivatives']
  510. pN=self.get(d['n'])
  511. n=pN['value']
  512. DN=pN['derivatives']
  513. if any(['function' in pA,'function' in pN]):
  514. fa=function.to(a)
  515. fn=function.to(n)
  516. f=lambda t,a=fa,n=fn:numpy.power(a(t),n(t))
  517. dfdA=lambda t,n=fn,f=f,a=fa:n(t)*f(t)/a(t)
  518. dfdN=lambda t,a=fa,f=f:numpy.log(a(t))*f(t)
  519. dA=function.generate(dfdA,DA)
  520. dN=function.generate(dfdN,DN)
  521. return function.Object(f,[dA,dN])
  522. else:
  523. f=numpy.power(a,n)
  524. return derivedObject(f,[{'df':n*f/a,'D':DA},{'df':f*numpy.log(a),'D':DN}])
  525. if d['type']=='ratio':
  526. #print('{}/{}'.format(d['a'],d['b']))
  527. pA=self.get(d['a'])
  528. a=pA['value']
  529. DA=pA['derivatives']
  530. pB=self.get(d['b'])
  531. b=pB['value']
  532. DB=pB['derivatives']
  533. #even more generic -> df/dp=[df/dA*dA/dp+df/dB*dB/dp]
  534. if any(['function' in pA,'function' in pB]):
  535. fa=function.to(a)
  536. fb=function.to(b)
  537. f=lambda t,a=fa,b=fb,:a(t)/b(t)
  538. dfdA=lambda t,f=f,a=fa: f(t)/a(t)
  539. dfdB=lambda t,f=f,b=fb: -f(t)/b(t)
  540. dA=function.generate(dfdA,DA)
  541. dB=function.generate(dfdB,DB)
  542. return function.Object(f,[dA,dB])
  543. else:
  544. return derivedObject(a/b,[{'df':1/b,'D':DA},{'df':-a/b/b,'D':DB}])
  545. if d['type']=='sum':
  546. #print('{}+{}'.format(d['a'],d['b']))
  547. pA=self.get(d['a'])
  548. a=pA['value']
  549. DA=pA['derivatives']
  550. pB=self.get(d['b'])
  551. b=pB['value']
  552. DB=pB['derivatives']
  553. #even more generic -> df/dp=[df/dA*dA/dp+df/dB*dB/dp]
  554. if any(['function' in pA,'function' in pB]):
  555. fa=function.to(a)
  556. fb=function.to(b)
  557. f=lambda t,a=fa,b=fb,:a(t)+b(t)
  558. dfdA=lambda t: 1
  559. dfdB=lambda t: 1
  560. dA=function.generate(dfdA,DA)
  561. dB=function.generate(dfdB,DB)
  562. return function.Object(f,[dA,dB])
  563. else:
  564. return derivedObject(a+b,[{'df':1,'D':DA},{'df':1,'D':DB}])
  565. def calculateDerivative(par):
  566. #add derivatives if dist(short for distribution) is specified
  567. return "dist" in par
  568. def sumValues(dArray,x):
  569. s=0
  570. for a in dArray:
  571. try:
  572. s+=a[x]
  573. except KeyError:
  574. continue
  575. return s
  576. def valueObject(v,parName):
  577. #convert everything to functions
  578. d0={parName:1}
  579. return {'value':v,'derivatives':{parName:1}}
  580. def derivedObject(f,ders):
  581. o={'value':f}
  582. DD=[]
  583. for d in ders:
  584. df=d['df']
  585. D=d['D']
  586. DD.append({x:df*D[x] for x in D})
  587. allKeys=[]
  588. for x in DD:
  589. allKeys.extend(x.keys())
  590. allKeys=list(set(allKeys))
  591. o['derivatives']={x:sumValues(DD,x) for x in allKeys}
  592. return o
  593. def splitVector(v):
  594. if v.find('(')<0:
  595. return [v]
  596. return v[1:-1].split(',')
  597. def parseFunction(formula):
  598. if formula['name']=='exponential':
  599. c0=formula['constant']
  600. k=formula['k']
  601. return lambda t,c=c0,k=k:c*numpy.exp(k*t)
  602. if formula['name']=='constant':
  603. c0=formula['value']
  604. return lambda t,c0=c0:c0
  605. if formula['name']=='Heavyside':
  606. t0=formula['limit']
  607. v=formula['value']
  608. return lambda t,v=v,t0=t0:v if t<t0 else 0
  609. return lambda t:1
  610. def addValue(qdict,compName,v):
  611. #add function to compName of dictionary qdict,
  612. #check if compName exists and handle the potential error
  613. #lambda functions can't be summed directly, so qdict is a list
  614. #that will be merged at matrix generation time
  615. try:
  616. qdict[compName].append(v)
  617. except KeyError:
  618. qdict[compName]=[v]
  619. #also add derivatives
  620. #
  621. # for d in dTarget:
  622. # ctarget=self.getSEJ_comp(d,target)
  623. # addValue(ctarget,target,dTarget[d])
  624. def get(timeUnit,par):
  625. v=par["value"]
  626. #convert to seconds
  627. try:
  628. parUnits=par['unit'].split('/')
  629. except (KeyError,IndexError):
  630. #no unit given
  631. return v
  632. try:
  633. if parUnits[1]==timeUnit:
  634. return v
  635. except IndexError:
  636. #no / in unit name
  637. return v
  638. if parUnits[1]=='min' and timeUnit=='s':
  639. return v/60
  640. if parUnits[1]=='s' and timeUnit=='min':
  641. return 60*v
  642. #no idea what to do
  643. return v