cModel.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707
  1. import numpy
  2. import json
  3. import os
  4. import scipy.interpolate
  5. #for partial function specializations
  6. import functools
  7. import function
  8. import importlib
  9. importlib.reload(function)
  10. class model:
  11. def __init__(self):
  12. self.compartments={}
  13. self.seJ={}
  14. def add_source(self,compartmentName,formula):
  15. self.compartments[compartmentName]['source']=formula
  16. def add_compartment(self,compartmentName):
  17. self.compartments[compartmentName]={}
  18. self.compartments[compartmentName]['targets']={}
  19. self.compartments[compartmentName]['sensTargets']={}
  20. def getTimeUnit(self):
  21. try:
  22. return self.mod['timeUnit']
  23. except KeyError:
  24. return 's'
  25. def bind(self,src,target,qName,pcName,useVolume=0):
  26. #establish a flow from source compartment to the target
  27. #the source equation (where we subtract the current)
  28. #in fact, this is the diagonal element
  29. #get volume names
  30. srcVName=self.getVolumePar(src,useVolume)
  31. #generate coupling object (w/derivatives)
  32. pSrc=self.couplingObject(-1,qName,pcName,srcVName)
  33. #this includes derivatives and value!
  34. self.addValueObject(src,src,pSrc)
  35. #special target which is not part of calculation
  36. if target=='dump':
  37. return
  38. #the target equation (where we add the current)
  39. #get volume names
  40. targetVName=self.getVolumePar(target,useVolume)
  41. #generate coupling object
  42. pTarget=self.couplingObject(1,qName,pcName,targetVName)
  43. #equation is for target compartment, but binding for source
  44. self.addValueObject(target,src,pTarget)
  45. def addValueObject(self,targetName,srcName,cObject):
  46. #always binds equation id and a variable
  47. targetList=self.compartments[targetName]['targets']
  48. addValue(targetList,srcName,cObject["value"])
  49. der=cObject["derivatives"]
  50. for d in der:
  51. targetSE=self.getSEJ_comp(d,targetName)
  52. addValue(targetSE,srcName,der[d])
  53. def couplingObject(self,sign, qParName, pcParName, vParName):
  54. qPar=self.get(qParName)
  55. pcPar=self.get(pcParName)
  56. vPar=self.get(vParName)
  57. q=qPar['value']
  58. pc=pcPar['value']
  59. v=vPar['value']
  60. DPC=pcPar['derivatives']
  61. DQ=qPar['derivatives']
  62. DV=vPar['derivatives']
  63. if any(['function' in qPar,'function' in pcPar, 'function' in vPar]):
  64. fq=function.to(q)
  65. fpc=function.to(pc)
  66. fv=function.to(v)
  67. f=lambda t,q=fq,pc=fpc,v=fv,s=sign:s*q(t)/v(t)/pc(t)
  68. dfdPC=lambda t,f=f,pc=fpc:-f(t)/pc(t)
  69. dPC=function.generate(dfdPC,DPC)
  70. dfdQ=lambda t,f=f,q=fq: f(t)/q(t)
  71. dQ=function.generate(dfdQ,DQ)
  72. dfdV=lambda t,f=f,v=fv: -f(t)/v(t)
  73. dV=function.generate(dfdV,DV)
  74. return function.Object(f,[dPC,dQ,dV])
  75. else:
  76. f=sign*q/v/pc
  77. return derivedObject(sign*q/v/pc,\
  78. [{'df':-f/pc,'D':DPC},\
  79. {'df':sign/v/pc,'D':DQ},\
  80. {'df':-f/v,'D':DV}])
  81. #derivatives is the combination of the above
  82. def getVolumePar(self,compartment,useVolume=1):
  83. #returnis volume name, if found and useVolume is directed,
  84. #or a standard parameter one
  85. if not useVolume:
  86. return "one"
  87. try:
  88. return self.mod["volumes"][compartment]
  89. #parV=self.mod["parameters"][parVName]
  90. except KeyError:
  91. pass
  92. return "one"
  93. def build(self):
  94. comps=self.compartments
  95. self.n=len(comps)
  96. self.fu=[lambda t:0]*self.n
  97. self.lut={c:i for (i,c) in zip(range(self.n),comps.keys())}
  98. self.dM={}
  99. self.fM=numpy.zeros((self.n,self.n))
  100. for c in comps:
  101. comp=comps[c]
  102. if 'source' in comp:
  103. self.fu[self.lut[c]]=parseFunction(comp['source'])
  104. for t in comp['targets']:
  105. arr=comp['targets'][t]
  106. if function.contains(arr):
  107. try:
  108. self.dM[self.lut[c]][self.lut[t]]=\
  109. function.sumArray(arr)
  110. except (KeyError,TypeError):
  111. self.dM[self.lut[c]]={}
  112. self.dM[self.lut[c]][self.lut[t]]=\
  113. function.sumArray(arr)
  114. else:
  115. #just set once
  116. self.fM[self.lut[c],self.lut[t]]=sum(arr)
  117. #build SE part
  118. self.buildSE()
  119. def buildSE(self):
  120. #check which parameterst to include
  121. parList=[]
  122. pars=self.parSetup['parameters']
  123. for parName in self.seJ:
  124. #print(par)
  125. par=pars[parName]
  126. usePar=calculateDerivative(par)
  127. #print('[{}]: {}'.format(usePar,par))
  128. if not usePar:
  129. continue
  130. parList.append(parName)
  131. #print(parList)
  132. self.m=len(parList)
  133. self.lutSE={c:i for (i,c) in zip(range(self.m),parList)}
  134. w=self.getWeights(self.lutSE)
  135. w=numpy.sqrt(w)
  136. self.qSS={}
  137. self.SS=numpy.zeros((self.m,self.n,self.n))
  138. for parName in parList:
  139. sources=self.seJ[parName]
  140. for compartment in sources:
  141. targets=sources[compartment]
  142. for t in targets:
  143. k=self.lutSE[parName]
  144. i=self.lut[compartment]
  145. j=self.lut[t]
  146. #print('[{} {} {}] {}'.format(parName,compartment,t,targets[t]))
  147. arr=targets[t]
  148. if not function.contains(arr):
  149. self.SS[k,i,j]=w[k]*sum(arr)
  150. continue
  151. ft=function.sumArray(arr,w[k])
  152. try:
  153. self.qSS[k][i][j]=ft
  154. except (KeyError,TypeError):
  155. try:
  156. self.qSS[k][i]={}
  157. self.qSS[k][i][j]=ft
  158. except (KeyError,TypeError):
  159. self.qSS[k]={}
  160. self.qSS[k][i]={}
  161. self.qSS[k][i][j]=ft
  162. #use fM to build static part of fJ
  163. N=self.n*(self.m+1)
  164. self.fJ=numpy.zeros((N,N))
  165. for i in range(self.m+1):
  166. self.fJ[i*self.n:(i+1)*self.n,i*self.n:(i+1)*self.n]=self.fM
  167. def inspect(self):
  168. comps=self.compartments
  169. pars=self.parSetup['parameters']
  170. #pars=self.mod['parameters']
  171. tu=self.getTimeUnit()
  172. print('Time unit: {}'.format(tu))
  173. print('Compartments')
  174. for c in comps:
  175. print('{}/{}:'.format(c,self.lut[c]))
  176. comp=comps[c]
  177. if 'source' in comp:
  178. print('\tsource\n\t\t{}'.format(comp['source']))
  179. print('\ttargets')
  180. for t in comp['targets']:
  181. print('\t\t{}[{},{}]: {}'.format(t,self.lut[c],self.lut[t],\
  182. comp['targets'][t]))
  183. print('Flows')
  184. for f in self.flows:
  185. fName=self.flows[f]
  186. fParName=self.mod['flows'][fName]
  187. fPar=pars[fParName]
  188. print('\t{}[{}]:{} [{}]'.format(f,fName,fParName,self.get(fParName)))
  189. print('Volumes')
  190. for v in self.mod['volumes']:
  191. vParName=self.mod['volumes'][v]
  192. vPar=pars[vParName]
  193. print('\t{}:{} [{}]'.format(v,vParName,self.get(vParName)))
  194. print('Partition coefficients')
  195. for pc in self.mod['partitionCoefficients']:
  196. pcParName=self.mod['partitionCoefficients'][pc]
  197. pcPar=pars[pcParName]
  198. print('\t{}:{} [{}]'.format(pc,pcParName,self.get(pcParName)))
  199. print('SE parameters')
  200. for p in self.seJ:
  201. print(p)
  202. sources=self.seJ[p]
  203. for compartment in sources:
  204. targets=sources[compartment]
  205. for t in targets:
  206. print('\t SE bind {}/{}:{}'.format(compartment,t,targets[t]))
  207. def parse(self,setupFile,parameterFile):
  208. with open(setupFile,'r') as f:
  209. self.mod=json.load(f)
  210. with open(parameterFile,'r') as f:
  211. self.parSetup=json.load(f)
  212. for m in self.mod['compartments']:
  213. self.add_compartment(m)
  214. self.add_default_parameters()
  215. #standard parameters such as one,zero etc.
  216. for s in self.mod['sources']:
  217. #src=mod['sources'][s]
  218. self.add_source(s,self.mod['sources'][s])
  219. self.flows={}
  220. #pars=self.mod['parameters']
  221. pars=self.parSetup['parameters']
  222. for f in self.mod['flows']:
  223. #skip comments
  224. if f.find(':')<0:
  225. continue
  226. comps=f.split(':')
  227. c0=splitVector(comps[0])
  228. c1=splitVector(comps[1])
  229. for x in c0:
  230. for y in c1:
  231. pairName='{}:{}'.format(x,y)
  232. self.flows[pairName]=f
  233. for b in self.mod['bindings']['diffusion']:
  234. #whether to scale transfer constants to organ volume
  235. #default is true, but changing here will assume no scaling
  236. useVolume=1
  237. comps=b.split('->')
  238. try:
  239. pcParName=self.mod['partitionCoefficients'][b]
  240. except KeyError:
  241. pcParName="one"
  242. kParName=self.mod['bindings']['diffusion'][b]
  243. #operate with names to allow for value/function/derived infrastructure
  244. self.bind(comps[0],comps[1],kParName,pcParName,useVolume)
  245. for q in self.mod['bindings']['flow']:
  246. comps=q.split('->')
  247. srcs=splitVector(comps[0])
  248. tgts=splitVector(comps[1])
  249. for cs in srcs:
  250. for ct in tgts:
  251. #get partition coefficient
  252. try:
  253. pcParName=self.mod['partitionCoefficients'][cs]
  254. except KeyError:
  255. pcParName="one"
  256. #get flow (direction could be reversed)
  257. try:
  258. qName=self.flows['{}:{}'.format(cs,ct)]
  259. except KeyError:
  260. qName=self.flows['{}:{}'.format(ct,cs)]
  261. flowParName=self.mod['flows'][qName]
  262. #flowPar=pars[flowParName]
  263. self.bind(cs,ct,flowParName,pcParName,1)
  264. self.build()
  265. def add_default_parameters(self):
  266. pars=self.parSetup['parameters']
  267. pars['one']={'value':1}
  268. pars['zero']={'value':0}
  269. def M(self,t):
  270. for i in self.dM:
  271. for j in self.dM[i]:
  272. self.fM[i,j]=self.dM[i][j](t)
  273. #create an array and fill it with outputs of function at t
  274. return self.fM
  275. def u(self,t):
  276. ub=[f(t) for f in self.fu]
  277. return numpy.array(ub)
  278. def jacobiFull(self,t):
  279. #update jacobi created during build phase with time dependent values
  280. for i in self.dM:
  281. for j in self.dM[i]:
  282. for k in range(system.m+1):
  283. self.fJ[k*system.n+i,k*system.n+j]=self.dM[i][j](t)
  284. return self.fJ
  285. def fSS(self,t):
  286. for k in self.qSS:
  287. for i in self.qSS[k]:
  288. for j in self.qSS[k][i]:
  289. #print('[{},{},{}] {}'.format(k,i,j,self.qSS[k][i][j]))
  290. self.SS[k,i,j]=(self.qSS[k][i][j])(t)
  291. return self.SS
  292. def fSY(self,y,t):
  293. #M number of sensitivity parameters
  294. #N number of equations
  295. #fSS is MxNxN
  296. #assume a tabulated solution y(t) at t spaced intervals
  297. qS=self.fSS(t).dot(y)
  298. #qS is MxN
  299. #but NxM is expected, so do a transpose
  300. #for simultaneous calculation, a Nx(M+1) matrix is expected
  301. tS=numpy.zeros((self.n,self.m+1))
  302. #columns from 2..M+1 are the partial derivatives
  303. tS[:,1:]=numpy.transpose(qS)
  304. #first column is the original function
  305. tS[:,0]=self.u(t)
  306. return tS
  307. def fS(self,t):
  308. #M number of sensitivity parameters
  309. #N number of equations
  310. #fSS is MxNxN
  311. #assume a tabulated solution y(t) at t spaced intervals
  312. qS=self.fSS(t).dot(self.getY(t))
  313. return numpy.transpose(qS)
  314. def getSEJ(self,parName):
  315. #find the sensitivity (SE) derivative of Jacobi with
  316. #respect to parameter
  317. try:
  318. return self.seJ[parName]
  319. except KeyError:
  320. self.seJ[parName]={}
  321. return self.seJ[parName]
  322. def getSEJ_comp(self,parName,compartmentName):
  323. #find equation dictating concentration in compartmentName
  324. #for jacobi-parameter derivative
  325. seJ=self.getSEJ(parName)
  326. try:
  327. return seJ[compartmentName]
  328. except KeyError:
  329. seJ[compartmentName]={}
  330. return seJ[compartmentName]
  331. def setY(self,t,y):
  332. self.tck=[None]*self.n
  333. for i in range(self.n):
  334. self.tck[i] = scipy.interpolate.splrep(t, y[:,i], s=0)
  335. def getY(self,t):
  336. fY=numpy.zeros(self.n)
  337. for i in range(self.n):
  338. fY[i]=scipy.interpolate.splev(t, self.tck[i], der=0)
  339. return fY
  340. def getWeight(self,parName):
  341. pars=self.parSetup['parameters']
  342. par=pars[parName]
  343. #self.get parses the units
  344. v=self.get(parName)["value"]
  345. if par['dist']=='lognormal':
  346. #this is sigma^2_lnx
  347. sln2=numpy.log(par["cv"]*par["cv"]+1)
  348. #have to multiplied by value to get the derivative
  349. #with respect to lnx
  350. return sln2*v*v
  351. else:
  352. #for Gaussian, cv is sigma/value; get sigma by value multiplication
  353. return par["cv"]*par["cv"]*v*v
  354. def getMax(lutSE):
  355. fm=-1
  356. for x in lutSE:
  357. if int(lutSE[x])>fm:
  358. fm=lutSE[x]
  359. return fm
  360. def getWeights(self,lutSE):
  361. #pars=self.parSetup['parameters']
  362. wts=numpy.zeros((model.getMax(lutSE)+1))
  363. for parName in lutSE:
  364. j=lutSE[parName]
  365. wts[j]=self.getWeight(parName)
  366. return wts
  367. def getDerivatives(self,se,i):
  368. #return latest point derivatives
  369. fse=se[-1][i]
  370. #fse is an m-vector
  371. return fse*fse
  372. def calculateUncertainty(self,se):
  373. s2out=numpy.zeros(se.shape[1:])
  374. se2=numpy.multiply(se,se)
  375. #w=self.getWeights(self.lutSE)
  376. w=numpy.ones((self.m))
  377. return numpy.sqrt(numpy.dot(se2,w))
  378. def get(self,parName):
  379. pars=self.parSetup['parameters']
  380. par=pars[parName]
  381. par['name']=parName
  382. if "value" in par:
  383. return self.getValue(par)
  384. if "function" in par:
  385. return self.getFunction(par)
  386. if "derived" in par:
  387. return self.getDerived(par)
  388. print('Paramter {} not found!'.format(parName))
  389. def getValue(self,par):
  390. v=par["value"]
  391. parName=par['name']
  392. #convert to seconds
  393. try:
  394. parUnits=par['unit'].split('/')
  395. except (KeyError,IndexError):
  396. #no unit given
  397. return valueObject(v,parName)
  398. timeUnit=self.getTimeUnit()
  399. try:
  400. if parUnits[1]==timeUnit:
  401. return valueObject(v,parName)
  402. except IndexError:
  403. #no / in unit name
  404. return valueObject(v,parName)
  405. if parUnits[1]=='min' and timeUnit=='s':
  406. return valueObject(v/60,parName)
  407. if parUnits[1]=='s' and timeUnit=='min':
  408. return valueObject(60*v,parName)
  409. if parUnits[1]=='day' and timeUnit=='min':
  410. return valueObject(v/24/60,parName)
  411. if parUnits[1]=='hour' and timeUnit=='min':
  412. return valueObject(v/60,parName)
  413. #no idea what to do
  414. return valueObject(v,parName)
  415. def getFunction(self,par):
  416. fName=par['function']
  417. #print('[{}]: getFunction({})'.format(par['name'],par['function']))
  418. df=self.parSetup['functions'][fName]
  419. skip=['type']
  420. par1={x:self.get(df[x]) for x in df if x not in skip}
  421. if df['type']=='linearGrowth':
  422. #print(par1)
  423. return function.linearGrowth(par1)
  424. if df['type']=='linearGrowthFixedSlope':
  425. return function.linearGrowthFixedSlope(par1)
  426. print('Function {} not found!'.format(fName))
  427. def getDerived(self,par):
  428. dName=par['derived']
  429. d=self.parSetup['derivedParameters'][dName]
  430. #print('Derived [{}]: type {}'.format(dName,d['type']))
  431. if d['type']=='product':
  432. #print('{}*{}'.format(d['a'],d['b']))
  433. pA=self.get(d['a'])
  434. a=pA['value']
  435. DA=pA['derivatives']
  436. pB=self.get(d['b'])
  437. b=pB['value']
  438. DB=pB['derivatives']
  439. #even more generic -> df/dp=[df/dA*dA/dp+df/dB*dB/dp]
  440. if any(['function' in pA,'function' in pB]):
  441. fa=function.to(a)
  442. fb=function.to(b)
  443. f=lambda t,a=fa,b=fb:a(t)*b(t)
  444. dfdA=lambda t,b=fb: b(t)
  445. dfdB=lambda t,a=fa: a(t)
  446. dA=function.generate(dfdA,DA)
  447. dB=function.generate(dfdB,DB)
  448. return function.Object(f,[dA,dB])
  449. else:
  450. return derivedObject(a*b,[{'df':b,'D':DA},{'df':a,'D':DB}])
  451. if d['type']=='power':
  452. #print('{}^{}'.format(d['a'],d['n']))
  453. pA=self.get(d['a'])
  454. a=pA['value']
  455. DA=pA['derivatives']
  456. pN=self.get(d['n'])
  457. n=pN['value']
  458. DN=pN['derivatives']
  459. if any(['function' in pA,'function' in pN]):
  460. fa=function.to(a)
  461. fn=function.to(n)
  462. f=lambda t,a=fa,n=fn:numpy.power(a(t),n(t))
  463. dfdA=lambda t,n=fn,f=f,a=fa:n(t)*f(t)/a(t)
  464. dfdN=lambda t,a=fa,f=f:numpy.log(a(t))*f(t)
  465. dA=function.generate(dfdA,DA)
  466. dN=function.generate(dfdN,DN)
  467. return function.Object(f,[dA,dN])
  468. else:
  469. f=numpy.power(a,n)
  470. return derivedObject(f,[{'df':n*f/a,'D':DA},{'df':f*numpy.log(a),'D':DN}])
  471. if d['type']=='ratio':
  472. #print('{}/{}'.format(d['a'],d['b']))
  473. pA=self.get(d['a'])
  474. a=pA['value']
  475. DA=pA['derivatives']
  476. pB=self.get(d['b'])
  477. b=pB['value']
  478. DB=pB['derivatives']
  479. #even more generic -> df/dp=[df/dA*dA/dp+df/dB*dB/dp]
  480. if any(['function' in pA,'function' in pB]):
  481. fa=function.to(a)
  482. fb=function.to(b)
  483. f=lambda t,a=fa,b=fb,:a(t)/b(t)
  484. dfdA=lambda t,f=f,a=fa: f(t)/a(t)
  485. dfdB=lambda t,f=f,b=fb: -f(t)/b(t)
  486. dA=function.generate(dfdA,DA)
  487. dB=function.generate(dfdB,DB)
  488. return function.Object(f,[dA,dB])
  489. else:
  490. return derivedObject(a/b,[{'df':1/b,'D':DA},{'df':-a/b/b,'D':DB}])
  491. if d['type']=='sum':
  492. #print('{}+{}'.format(d['a'],d['b']))
  493. pA=self.get(d['a'])
  494. a=pA['value']
  495. DA=pA['derivatives']
  496. pB=self.get(d['b'])
  497. b=pB['value']
  498. DB=pB['derivatives']
  499. #even more generic -> df/dp=[df/dA*dA/dp+df/dB*dB/dp]
  500. if any(['function' in pA,'function' in pB]):
  501. fa=function.to(a)
  502. fb=function.to(b)
  503. f=lambda t,a=fa,b=fb,:a(t)+b(t)
  504. dfdA=lambda t: 1
  505. dfdB=lambda t: 1
  506. dA=function.generate(dfdA,DA)
  507. dB=function.generate(dfdB,DB)
  508. return function.Object(f,[dA,dB])
  509. else:
  510. return derivedObject(a+b,[{'df':1,'D':DA},{'df':1,'D':DB}])
  511. def calculateDerivative(par):
  512. #add derivatives if dist(short for distribution) is specified
  513. return "dist" in par
  514. def sumValues(dArray,x):
  515. s=0
  516. for a in dArray:
  517. try:
  518. s+=a[x]
  519. except KeyError:
  520. continue
  521. return s
  522. def valueObject(v,parName):
  523. #convert everything to functions
  524. d0={parName:1}
  525. return {'value':v,'derivatives':{parName:1}}
  526. def derivedObject(f,ders):
  527. o={'value':f}
  528. DD=[]
  529. for d in ders:
  530. df=d['df']
  531. D=d['D']
  532. DD.append({x:df*D[x] for x in D})
  533. allKeys=[]
  534. for x in DD:
  535. allKeys.extend(x.keys())
  536. allKeys=list(set(allKeys))
  537. o['derivatives']={x:sumValues(DD,x) for x in allKeys}
  538. return o
  539. def splitVector(v):
  540. if v.find('(')<0:
  541. return [v]
  542. return v[1:-1].split(',')
  543. def parseFunction(formula):
  544. if formula['name']=='exponential':
  545. c0=formula['constant']
  546. k=formula['k']
  547. return lambda t,c=c0,k=k:c*numpy.exp(k*t)
  548. if formula['name']=='constant':
  549. c0=formula['value']
  550. return lambda t,c0=c0:c0
  551. if formula['name']=='Heavyside':
  552. t0=formula['limit']
  553. v=formula['value']
  554. return lambda t,v=v,t0=t0:v if t<t0 else 0
  555. return lambda t:1
  556. def addValue(qdict,compName,v):
  557. #add function to compName of dictionary qdict,
  558. #check if compName exists and handle the potential error
  559. #lambda functions can't be summed directly, so qdict is a list
  560. #that will be merged at matrix generation time
  561. try:
  562. qdict[compName].append(v)
  563. except KeyError:
  564. qdict[compName]=[v]
  565. #also add derivatives
  566. #
  567. # for d in dTarget:
  568. # ctarget=self.getSEJ_comp(d,target)
  569. # addValue(ctarget,target,dTarget[d])
  570. def get(timeUnit,par):
  571. v=par["value"]
  572. #convert to seconds
  573. try:
  574. parUnits=par['unit'].split('/')
  575. except (KeyError,IndexError):
  576. #no unit given
  577. return v
  578. try:
  579. if parUnits[1]==timeUnit:
  580. return v
  581. except IndexError:
  582. #no / in unit name
  583. return v
  584. if parUnits[1]=='min' and timeUnit=='s':
  585. return v/60
  586. if parUnits[1]=='s' and timeUnit=='min':
  587. return 60*v
  588. #no idea what to do
  589. return v