cModel_posodabljanje.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827
  1. import numpy
  2. import json
  3. import os
  4. import scipy.interpolate
  5. #for partial function specializations
  6. import functools
  7. import function
  8. import importlib
  9. importlib.reload(function)
  10. class model:
  11. def __init__(self):
  12. self.compartments={}
  13. self.seJ={}
  14. self.scaled=[]
  15. self.parSetup = {"parameters": {}, "functions": {}, "derivedParameters": {}} # Default setup structure
  16. def add_input(self,compartmentName,parameterName):
  17. self.compartments[compartmentName]['input']=parameterName
  18. def add_compartment(self,compartmentName):
  19. self.compartments[compartmentName]={}
  20. self.compartments[compartmentName]['targets']={}
  21. self.compartments[compartmentName]['sensTargets']={}
  22. def getTimeUnit(self):
  23. try:
  24. return self.mod['timeUnit']
  25. except KeyError:
  26. return 's'
  27. def getParameters(self):
  28. """Returns the model parameters."""
  29. return self.parSetup['parameters']
  30. def get(self, parName):
  31. pars = self.parSetup['parameters']
  32. if parName not in pars:
  33. print(f"Parameter {parName} not found!")
  34. return None
  35. par = pars[parName]
  36. par['name'] = parName
  37. if "value" in par:
  38. return self.getValue(par)
  39. if "function" in par:
  40. return self.getFunction(par)
  41. if "derived" in par:
  42. return self.getDerived(par)
  43. print(f"Parameter {parName} not found!")
  44. return None
  45. def updateParameters(self, param_updates, jsonFile, newFile):
  46. """
  47. Updates the parameters directly within the pars structure and writes them to a new file,
  48. keeping the original structure intact.
  49. Parameters:
  50. param_updates (dict): Dictionary where keys are parameter names and values are new parameter values.
  51. jsonFile (str): Path to the original JSON file (for structure reference).
  52. newFile (str): Path to the new file where updated parameters will be saved.
  53. """
  54. # Update the parameters
  55. pars = self.parSetup['parameters']
  56. for parName, newValue in param_updates.items():
  57. if parName in pars:
  58. if "value" in pars[parName]:
  59. pars[parName]["value"] = newValue
  60. print(f"Parameter '{parName}' updated to {newValue}.")
  61. else:
  62. print(f"Parameter '{parName}' does not have a 'value' field.")
  63. else:
  64. print(f"Parameter '{parName}' not found in the model. Adding it.")
  65. pars[parName] = {"value": newValue}
  66. # Read the original file to get the structure
  67. with open(jsonFile, 'r') as file:
  68. data = json.load(file)
  69. # Merge updated parameters into the original data structure
  70. data['parameters'] = self.parSetup['parameters']
  71. # Save the updated data to a new file (not overwriting the original file)
  72. with open(newFile, 'w') as file:
  73. json.dump(data, file, indent=4)
  74. # Get relative path from the 'rezultati' directory onwards
  75. relative_path = os.path.relpath(newFile, start='/home/jakob/Documents/Sola/IJS/PBPK_ociscen')
  76. print(f"Parameters have been written to the new file: {relative_path}")
  77. def bind(self,src,target,qName,pcName):
  78. #establish a flow from source compartment to the target
  79. #the source equation (where we subtract the current)
  80. #in fact, this is the diagonal element
  81. #get volume names
  82. srcVName=self.getVolumePar(src)
  83. #generate coupling object (w/derivatives)
  84. pSrc=self.couplingObject(-1,qName,pcName,srcVName)
  85. #this includes derivatives and value!
  86. self.addValueObject(src,src,pSrc)
  87. #special target which is not part of calculation
  88. if target=='dump':
  89. return
  90. #the target equation (where we add the current)
  91. #get volume names
  92. targetVName=self.getVolumePar(target)
  93. #generate coupling object
  94. pTarget=self.couplingObject(1,qName,pcName,targetVName)
  95. #equation is for target compartment, but binding for source
  96. self.addValueObject(target,src,pTarget)
  97. def addValueObject(self,targetName,srcName,cObject):
  98. #always binds equation id and a variable
  99. targetList=self.compartments[targetName]['targets']
  100. addValue(targetList,srcName,cObject["value"])
  101. der=cObject["derivatives"]
  102. for d in der:
  103. targetSE=self.getSEJ_comp(d,targetName)
  104. addValue(targetSE,srcName,der[d])
  105. def couplingObject(self,sign, qParName, pcParName, vParName):
  106. qPar=self.get(qParName)
  107. pcPar=self.get(pcParName)
  108. vPar=self.get(vParName)
  109. q=qPar['value']
  110. pc=pcPar['value']
  111. v=vPar['value']
  112. DPC=pcPar['derivatives']
  113. DQ=qPar['derivatives']
  114. DV=vPar['derivatives']
  115. if any(['function' in qPar,'function' in pcPar, 'function' in vPar]):
  116. fq=function.to(q)
  117. fpc=function.to(pc)
  118. fv=function.to(v)
  119. f=lambda t,q=fq,pc=fpc,v=fv,s=sign:s*q(t)/v(t)/pc(t)
  120. dfdPC=lambda t,f=f,pc=fpc:-f(t)/pc(t)
  121. dPC=function.generate(dfdPC,DPC)
  122. dfdQ=lambda t,f=f,q=fq: f(t)/q(t)
  123. dQ=function.generate(dfdQ,DQ)
  124. dfdV=lambda t,f=f,v=fv: -f(t)/v(t)
  125. dV=function.generate(dfdV,DV)
  126. return function.Object(f,[dPC,dQ,dV])
  127. else:
  128. f=sign*q/v/pc
  129. return function.derivedObject(sign*q/v/pc,\
  130. [{'df':-f/pc,'D':DPC},\
  131. {'df':sign/v/pc,'D':DQ},\
  132. {'df':-f/v,'D':DV}])
  133. #derivatives is the combination of the above
  134. def getVolumePar(self,compartment):
  135. #returnis volume name, if found and useVolume is directed,
  136. #or a standard parameter one
  137. try:
  138. return self.mod["volumes"][compartment]
  139. #parV=self.mod["parameters"][parVName]
  140. except KeyError:
  141. pass
  142. return "one"
  143. def build(self):
  144. comps=self.compartments
  145. self.n=len(comps)
  146. #numeric representation of the input
  147. self.fu=numpy.zeros((self.n))
  148. #dictionary that holds potential input function objects
  149. self.du={}
  150. self.lut={c:i for (i,c) in zip(range(self.n),comps.keys())}
  151. self.dM={}
  152. self.fM=numpy.zeros((self.n,self.n))
  153. self.inputDerivatives={}
  154. self.uTotal=[]
  155. for c in comps:
  156. comp=comps[c]
  157. if 'input' in comp:
  158. qs=self.get(comp['input'])
  159. self.uTotal.append(qs["value"])
  160. qV=self.getVolumePar(c)
  161. #input is a quotient (amount of exogen per unit time per volume(mass) of input compartment)
  162. qs1=function.ratio(qs,self.get(qV))
  163. if function.isFunction(qs1):
  164. self.du[self.lut[c]]=qs1
  165. else:
  166. self.fu[self.lut[c]]=qs1['value']
  167. #let buildSE know we have to include this derivatives
  168. self.inputDerivatives[c]=qs1['derivatives']
  169. for t in comp['targets']:
  170. arr=comp['targets'][t]
  171. if function.contains(arr):
  172. try:
  173. self.dM[self.lut[c]][self.lut[t]]=\
  174. function.sumArray(arr)
  175. except (KeyError,TypeError):
  176. self.dM[self.lut[c]]={}
  177. self.dM[self.lut[c]][self.lut[t]]=\
  178. function.sumArray(arr)
  179. else:
  180. #just set once
  181. self.fM[self.lut[c],self.lut[t]]=sum(arr)
  182. #generate total from self.uTotal
  183. #ignore derivatives; uTotal is just a scaling shorthand
  184. if function.contains(self.uTotal):
  185. self.du[self.lut['total']]=function.Object(function.sumArray(self.uTotal),[])
  186. else:
  187. self.fu[self.lut['total']]=sum(self.uTotal)
  188. #build SE part
  189. self.buildSE()
  190. def buildSE(self):
  191. #check which parameterst to include
  192. parList=[]
  193. pars=self.parSetup['parameters']
  194. #add derivatives to jacobi terms
  195. parCandidates=list(self.seJ.keys())
  196. #add derivatives of input terms
  197. for x in self.inputDerivatives:
  198. D=self.inputDerivatives[x]
  199. parCandidates.extend(list(D.keys()))
  200. for x in self.du:
  201. D=self.du[x]['derivatives']
  202. parCandidates.extend(list(D.keys()))
  203. #get rid of duplicates
  204. parCandidates=list(set(parCandidates))
  205. for parName in parCandidates:
  206. #print(par)
  207. par=pars[parName]
  208. usePar=calculateDerivative(par)
  209. #print('[{}]: {}'.format(usePar,par))
  210. if not usePar:
  211. continue
  212. parList.append(parName)
  213. #print(parList)
  214. self.m=len(parList)
  215. self.lutSE={c:i for (i,c) in zip(range(self.m),parList)}
  216. w=self.getWeights(self.lutSE)
  217. w=numpy.sqrt(w)
  218. self.qSS={}
  219. self.SS=numpy.zeros((self.m,self.n,self.n))
  220. #elements of SS will be w_p*dM_i,j/dp
  221. for parName in parList:
  222. try:
  223. sources=self.seJ[parName]
  224. except KeyError:
  225. continue
  226. for compartment in sources:
  227. targets=sources[compartment]
  228. for t in targets:
  229. k=self.lutSE[parName]
  230. i=self.lut[compartment]
  231. j=self.lut[t]
  232. #print('[{} {} {}] {}'.format(parName,compartment,t,targets[t]))
  233. arr=targets[t]
  234. if not function.contains(arr):
  235. self.SS[k,i,j]=w[k]*sum(arr)
  236. continue
  237. ft=function.sumArray(arr,w[k])
  238. try:
  239. self.qSS[k][i][j]=ft
  240. except (KeyError,TypeError):
  241. try:
  242. self.qSS[k][i]={}
  243. self.qSS[k][i][j]=ft
  244. except (KeyError,TypeError):
  245. self.qSS[k]={}
  246. self.qSS[k][i]={}
  247. self.qSS[k][i][j]=ft
  248. #derivatives of inputs
  249. #time dependent derivatives are handled in self.Su(t)
  250. self.fSu=numpy.zeros((self.m,self.n))
  251. for x in self.inputDerivatives:
  252. D=self.inputDerivatives[x]
  253. for p in D:
  254. if p in parList:
  255. k=self.lutSE[p]
  256. self.fSu[self.lutSE[p],self.lut[x]]=D[p]*w[k]
  257. #use fM to build static part of fJ
  258. N=self.n*(self.m+1)
  259. self.fJ=numpy.zeros((N,N))
  260. for i in range(self.m+1):
  261. self.fJ[i*self.n:(i+1)*self.n,i*self.n:(i+1)*self.n]=self.fM
  262. def inspect(self):
  263. comps=self.compartments
  264. pars=self.parSetup['parameters']
  265. #pars=self.mod['parameters']
  266. tu=self.getTimeUnit()
  267. print('Time unit: {}'.format(tu))
  268. print('Compartments')
  269. for c in comps:
  270. print('{}/{}:'.format(c,self.lut[c]))
  271. comp=comps[c]
  272. if 'input' in comp:
  273. print('\tinput\n\t\t{}'.format(comp['input']))
  274. print('\ttargets')
  275. for t in comp['targets']:
  276. print('\t\t{}[{},{}]: {}'.format(t,self.lut[c],self.lut[t],\
  277. comp['targets'][t]))
  278. print('Flows')
  279. for f in self.flows:
  280. fName=self.flows[f]
  281. fParName=self.mod['flows'][fName]
  282. fPar=pars[fParName]
  283. print('\t{}[{}]:{} [{}]'.format(f,fName,fParName,self.get(fParName)))
  284. print('Volumes')
  285. for v in self.mod['volumes']:
  286. vParName=self.mod['volumes'][v]
  287. vPar=pars[vParName]
  288. print('\t{}:{} [{}]'.format(v,vParName,self.get(vParName)))
  289. print('Partition coefficients')
  290. for pc in self.mod['partitionCoefficients']:
  291. pcParName=self.mod['partitionCoefficients'][pc]
  292. pcPar=pars[pcParName]
  293. print('\t{}:{} [{}]'.format(pc,pcParName,self.get(pcParName)))
  294. def inspectSE(self):
  295. print('SE parameters')
  296. for p in self.seJ:
  297. print(p)
  298. sources=self.seJ[p]
  299. for compartment in sources:
  300. targets=sources[compartment]
  301. for t in targets:
  302. print('\t SE bind {}/{}:{}'.format(compartment,t,targets[t]))
  303. def parse(self,setupFile,parameterFile):
  304. with open(setupFile,'r') as f:
  305. self.mod=json.load(f)
  306. with open(parameterFile,'r') as f:
  307. self.parSetup=json.load(f)
  308. self.mod['compartments'].append('total')
  309. for m in self.mod['compartments']:
  310. self.add_compartment(m)
  311. for m in self.mod['scaled']:
  312. self.scaled.append(m)
  313. self.add_default_parameters()
  314. self.applyValues()
  315. def clearCompartments(self):
  316. for c in self.compartments:
  317. for t in self.compartments[c]:
  318. self.compartments[c][t]={}
  319. def applyValues(self):
  320. self.clearCompartments()
  321. #print(self.compartments)
  322. #standard parameters such as one,zero etc.
  323. for s in self.mod['inputs']:
  324. #src=mod['inputs'][s]
  325. self.add_input(s,self.mod['inputs'][s])
  326. self.flows={}
  327. #pars=self.mod['parameters']
  328. pars=self.parSetup['parameters']
  329. for f in self.mod['flows']:
  330. #skip comments
  331. if f.find(':')<0:
  332. continue
  333. comps=f.split(':')
  334. c0=splitVector(comps[0])
  335. c1=splitVector(comps[1])
  336. for x in c0:
  337. for y in c1:
  338. pairName='{}:{}'.format(x,y)
  339. self.flows[pairName]=f
  340. for b in self.mod['bindings']['diffusion']:
  341. #whether to scale transfer constants to organ volume
  342. #default is true, but changing here will assume no scaling
  343. comps=b.split('->')
  344. try:
  345. pcParName=self.mod['partitionCoefficients'][b]
  346. except KeyError:
  347. pcParName="one"
  348. kParName=self.mod['bindings']['diffusion'][b]
  349. #operate with names to allow for value/function/derived infrastructure
  350. self.bind(comps[0],comps[1],kParName,pcParName)
  351. for q in self.mod['bindings']['flow']:
  352. comps=q.split('->')
  353. srcs=splitVector(comps[0])
  354. tgts=splitVector(comps[1])
  355. for cs in srcs:
  356. for ct in tgts:
  357. #get partition coefficient
  358. try:
  359. pcParName=self.mod['partitionCoefficients'][cs]
  360. except KeyError:
  361. pcParName="one"
  362. #get flow (direction could be reversed)
  363. try:
  364. qName=self.flows['{}:{}'.format(cs,ct)]
  365. except KeyError:
  366. qName=self.flows['{}:{}'.format(ct,cs)]
  367. flowParName=self.mod['flows'][qName]
  368. #flowPar=pars[flowParName]
  369. self.bind(cs,ct,flowParName,pcParName)
  370. self.build()
  371. def add_default_parameters(self):
  372. pars=self.parSetup['parameters']
  373. pars['one']={'value':1}
  374. pars['zero']={'value':0}
  375. pars['two']={'value':2}
  376. def M(self,t,y=numpy.array([])):
  377. for i in self.dM:
  378. for j in self.dM[i]:
  379. self.fM[i,j]=self.dM[i][j](t)
  380. #create an array and fill it with outputs of function at t
  381. if (y.size==0):
  382. return self.fM
  383. self.set_scaledM(t,y)
  384. return self.fM
  385. def set_scaledM(self,t,y):
  386. #prevent zero division
  387. eps=1e-8
  388. for c in self.scaled:
  389. i=self.lut[c]
  390. it=self.lut['total']
  391. try:
  392. k=numpy.copy(self.originalK[i])
  393. except AttributeError:
  394. k=numpy.copy(self.fM[i,:])
  395. self.originalK={}
  396. self.originalK[i]=k
  397. #make another copy
  398. k=numpy.copy(self.originalK[i])
  399. except KeyError:
  400. k=numpy.copy(self.fM[i,:])
  401. self.originalK[i]=k
  402. #make another copy
  403. k=numpy.copy(self.originalK[i])
  404. k[i]=k[i]-self.u(t)[it]
  405. #scale all inputs by total input mass
  406. for j in range(self.n):
  407. self.fM[i,j]=k[j]/(y[it]+eps)
  408. def u(self,t):
  409. for x in self.du:
  410. self.fu[x]=self.du[x]['value'](t)
  411. #this should be done previously
  412. return self.fu
  413. def Su(self,t):
  414. w=self.getWeights(self.lutSE)
  415. w=numpy.sqrt(w)
  416. #add time dependent values
  417. for x in self.du:
  418. D=self.du[x]['derivatives']
  419. for p in D:
  420. k=self.lutSE[p]
  421. #print(f'[{p}]: {k}')
  422. self.fSu[k,x]=w[k]*D[p](t)
  423. return self.fSu
  424. def jacobiFull(self,t):
  425. #update jacobi created during build phase with time dependent values
  426. for i in self.dM:
  427. for j in self.dM[i]:
  428. for k in range(self.m+1):
  429. self.fJ[k*self.n+i,k*self.n+j]=self.dM[i][j](t)
  430. return self.fJ
  431. def fSS(self,t,y=numpy.array([])):
  432. for k in self.qSS:
  433. for i in self.qSS[k]:
  434. for j in self.qSS[k][i]:
  435. #print('[{},{},{}] {}'.format(k,i,j,self.qSS[k][i][j]))
  436. self.SS[k,i,j]=(self.qSS[k][i][j])(t)
  437. if y.size==0:
  438. return self.SS
  439. self.set_scaledSS(t,y)
  440. return self.SS
  441. def set_scaledSS(self,t,y):
  442. #prevent zero division
  443. eps=1e-8
  444. for c in self.scaled:
  445. it=self.lut['total']
  446. i=self.lut[c]
  447. try:
  448. dkdp=numpy.copy(self.originalSS[i])
  449. except AttributeError:
  450. dkdp=numpy.copy(self.SS[:,i,:])
  451. self.originalSS={}
  452. self.originalSS[i]=dkdp
  453. dkdp=numpy.copy(self.originalSS[i])
  454. except KeyError:
  455. dkdp=numpy.copy(self.SS[:,i,:])
  456. self.originalSS[i]=dkdp
  457. dkdp=numpy.copy(self.originalSS[i])
  458. self.SS[:,i,:]=dkdp/(y[it]+eps)
  459. #should add error on u!
  460. def fSY(self,y,t):
  461. #M number of sensitivity parameters
  462. #N number of equations
  463. #fSS is MxNxN
  464. #assume a tabulated solution y(t) at t spaced intervals
  465. qS=self.fSS(t,y).dot(y)
  466. #qS is MxN
  467. #but NxM is expected, so do a transpose
  468. #for simultaneous calculation, a Nx(M+1) matrix is expected
  469. tS=numpy.zeros((self.n,self.m+1))
  470. #columns from 2..M+1 are the partial derivatives
  471. tS[:,1:]=numpy.transpose(qS)
  472. #first column is the original function
  473. tS[:,0]=self.u(t)
  474. return tS
  475. def fS(self,t):
  476. #M number of sensitivity parameters
  477. #N number of equations
  478. #fSS is MxNxN
  479. #assume a tabulated solution y(t) at t spaced intervals
  480. qS=self.fSS(t).dot(self.getY(t))
  481. return numpy.transpose(qS)
  482. def getSEJ(self,parName):
  483. #find the sensitivity (SE) derivative of Jacobi with
  484. #respect to parameter
  485. try:
  486. return self.seJ[parName]
  487. except KeyError:
  488. self.seJ[parName]={}
  489. return self.seJ[parName]
  490. def getSEJ_comp(self,parName,compartmentName):
  491. #find equation dictating concentration in compartmentName
  492. #for jacobi-parameter derivative
  493. seJ=self.getSEJ(parName)
  494. try:
  495. return seJ[compartmentName]
  496. except KeyError:
  497. seJ[compartmentName]={}
  498. return seJ[compartmentName]
  499. def setY(self,t,y):
  500. self.tck=[None]*self.n
  501. for i in range(self.n):
  502. self.tck[i] = scipy.interpolate.splrep(t, y[:,i], s=0)
  503. def getY(self,t):
  504. fY=numpy.zeros(self.n)
  505. for i in range(self.n):
  506. fY[i]=scipy.interpolate.splev(t, self.tck[i], der=0)
  507. return fY
  508. def getWeight(self,parName):
  509. pars=self.parSetup['parameters']
  510. par=pars[parName]
  511. #self.get parses the units
  512. v=self.get(parName)["value"]
  513. #if par['dist']=='lognormal':
  514. #this is sigma^2_lnx
  515. #sln2=numpy.log(par["cv"]*par["cv"]+1)
  516. #have to multiplied by value to get the derivative
  517. #with respect to lnx
  518. #return sln2*v*v
  519. #else:
  520. #for Gaussian, cv is sigma/value; get sigma by value multiplication
  521. try:
  522. return par["cv"]*par["cv"]*v*v
  523. except KeyError:
  524. return 0
  525. def getMax(lutSE):
  526. fm=-1
  527. for x in lutSE:
  528. if int(lutSE[x])>fm:
  529. fm=lutSE[x]
  530. return fm
  531. def getWeights(self,lutSE):
  532. #pars=self.parSetup['parameters']
  533. wts=numpy.zeros((model.getMax(lutSE)+1))
  534. for parName in lutSE:
  535. j=lutSE[parName]
  536. wts[j]=self.getWeight(parName)
  537. return wts
  538. def getVolumes(self):
  539. m=numpy.zeros((len(self.lut)))
  540. for p in self.lut:
  541. m[self.lut[p]]=self.getVolume(p)
  542. return m
  543. def getVolume(self,p):
  544. pV=self.getVolumePar(p)
  545. return self.get(pV)['value']
  546. def getDerivatives(self,se,i):
  547. #return latest point derivatives
  548. fse=se[-1][i]
  549. #fse is an m-vector
  550. return fse*fse
  551. def calculateUncertainty(self,s):
  552. #s2out=numpy.zeros(s1.shape[1:])
  553. s2=numpy.multiply(s,s)
  554. #w=self.getWeights(self.lutSE)
  555. w=numpy.ones((self.m))
  556. return numpy.sqrt(numpy.dot(s2,w))
  557. def setValue(self, parName, parValue):
  558. #change a single parameter parName to value parValue
  559. #should run applyValues after all values are set
  560. pars=self.parSetup['parameters']
  561. try:
  562. par=pars[parName]
  563. except:
  564. print(f'Failed to find parameter {parName}')
  565. return False
  566. try:
  567. par['value']=parValue
  568. except KeyError:
  569. print(f'Failed to set value for {parName}')
  570. return False
  571. return True
  572. def setValues(self,parNames,parValues):
  573. #change a set of parameters in list parNames to
  574. #accordingly ordered set of values parValues
  575. #also recalculates the matrix
  576. for p,v in zip(parNames,parValues):
  577. self.setValue(p,v)
  578. self.applyValues()
  579. def get(self,parName):
  580. pars=self.parSetup['parameters']
  581. par=pars[parName]
  582. par['name']=parName
  583. if "value" in par:
  584. return self.getValue(par)
  585. if "function" in par:
  586. return self.getFunction(par)
  587. if "derived" in par:
  588. return self.getDerived(par)
  589. print('Paramter {} not found!'.format(parName))
  590. def getValue(self,par):
  591. v=par["value"]
  592. parName=par['name']
  593. #convert to seconds
  594. try:
  595. parUnits=par['unit'].split('/')
  596. except (KeyError,IndexError):
  597. #no unit given
  598. return valueObject(v,parName)
  599. timeUnit=self.getTimeUnit()
  600. try:
  601. if parUnits[1]==timeUnit:
  602. return valueObject(v,parName)
  603. except IndexError:
  604. #no / in unit name
  605. return valueObject(v,parName)
  606. if parUnits[1]=='min' and timeUnit=='s':
  607. return valueObject(v/60,parName)
  608. if parUnits[1]=='s' and timeUnit=='min':
  609. return valueObject(60*v,parName)
  610. if parUnits[1]=='day' and timeUnit=='min':
  611. return valueObject(v/24/60,parName)
  612. if parUnits[1]=='hour' and timeUnit=='min':
  613. return valueObject(v/60,parName)
  614. #no idea what to do
  615. return valueObject(v,parName)
  616. def getFunction(self,par):
  617. fName=par['function']
  618. #print('[{}]: getFunction({})'.format(par['name'],par['function']))
  619. df=self.parSetup['functions'][fName]
  620. skip=['type']
  621. par1={x:self.get(df[x]) for x in df if x not in skip}
  622. if df['type']=='linearGrowth':
  623. #print(par1)
  624. return function.linearGrowth(par1)
  625. if df['type']=='linearGrowthFixedSlope':
  626. return function.linearGrowthFixedSlope(par1)
  627. if df['type']=='exp':
  628. return function.exp(par1)
  629. print('Function {}/{} not found!'.format(fName,df))
  630. def getDerived(self,par):
  631. dName=par['derived']
  632. d=self.parSetup['derivedParameters'][dName]
  633. #print('Derived [{}]: type {}'.format(dName,d['type']))
  634. if d['type']=='product':
  635. return function.product(self.get(d['a']),self.get(d['b']))
  636. if d['type']=='power':
  637. return function.power(self.get(d['a']),self.get(d['n']))
  638. if d['type']=='ratio':
  639. return function.ratio(pA=self.get(d['a']),pB=self.get(d['b']))
  640. if d['type']=='sum':
  641. return function.add(pA=self.get(d['a']),pB=self.get(d['b']))
  642. def calculateDerivative(par):
  643. #add derivatives if dist(short for distribution) is specified
  644. return "dist" in par
  645. def valueObject(v,parName):
  646. #convert everything to functions
  647. d0={parName:1}
  648. return {'value':v,'derivatives':{parName:1}}
  649. def splitVector(v):
  650. if v.find('(')<0:
  651. return [v]
  652. return v[1:-1].split(',')
  653. def addValue(qdict,compName,v):
  654. #add function to compName of dictionary qdict,
  655. #check if compName exists and handle the potential error
  656. #lambda functions can't be summed directly, so qdict is a list
  657. #that will be merged at matrix generation time
  658. try:
  659. qdict[compName].append(v)
  660. except KeyError:
  661. qdict[compName]=[v]
  662. #also add derivatives
  663. #
  664. # for d in dTarget:
  665. # ctarget=self.getSEJ_comp(d,target)
  666. # addValue(ctarget,target,dTarget[d])
  667. def get(timeUnit,par):
  668. v=par["value"]
  669. #convert to seconds
  670. try:
  671. parUnits=par['unit'].split('/')
  672. except (KeyError,IndexError):
  673. #no unit given
  674. return v
  675. try:
  676. if parUnits[1]==timeUnit:
  677. return v
  678. except IndexError:
  679. #no / in unit name
  680. return v
  681. if parUnits[1]=='min' and timeUnit=='s':
  682. return v/60
  683. if parUnits[1]=='s' and timeUnit=='min':
  684. return 60*v
  685. #no idea what to do
  686. return v