cModel.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688
  1. import numpy
  2. import json
  3. import os
  4. import scipy.interpolate
  5. #for partial function specializations
  6. import functools
  7. import function
  8. import importlib
  9. importlib.reload(function)
  10. class model:
  11. def __init__(self):
  12. self.compartments={}
  13. self.seJ={}
  14. def add_source(self,compartmentName,formula):
  15. self.compartments[compartmentName]['source']=formula
  16. def add_compartment(self,compartmentName):
  17. self.compartments[compartmentName]={}
  18. self.compartments[compartmentName]['targets']={}
  19. self.compartments[compartmentName]['sensTargets']={}
  20. def getTimeUnit(self):
  21. try:
  22. return self.mod['timeUnit']
  23. except KeyError:
  24. return 's'
  25. def bind(self,src,target,qName,pcName,useVolume=0):
  26. #establish a flow from source compartment to the target
  27. #the source equation (where we subtract the current)
  28. #in fact, this is the diagonal element
  29. #get volume names
  30. srcVName=self.getVolumePar(src,useVolume)
  31. #generate coupling object (w/derivatives)
  32. pSrc=self.couplingObject(-1,qName,pcName,srcVName)
  33. #this includes derivatives and value!
  34. self.addValueObject(src,src,pSrc)
  35. #special target which is not part of calculation
  36. if target=='dump':
  37. return
  38. #the target equation (where we add the current)
  39. #get volume names
  40. targetVName=self.getVolumePar(target,useVolume)
  41. #generate coupling object
  42. pTarget=self.couplingObject(1,qName,pcName,targetVName)
  43. #equation is for target compartment, but binding for source
  44. self.addValueObject(target,src,pTarget)
  45. def addValueObject(self,targetName,srcName,cObject):
  46. #always binds equation id and a variable
  47. targetList=self.compartments[targetName]['targets']
  48. addValue(targetList,srcName,cObject["value"])
  49. der=cObject["derivatives"]
  50. for d in der:
  51. targetSE=self.getSEJ_comp(d,targetName)
  52. addValue(targetSE,srcName,der[d])
  53. def couplingObject(self,sign, qParName, pcParName, vParName):
  54. qPar=self.get(qParName)
  55. pcPar=self.get(pcParName)
  56. vPar=self.get(vParName)
  57. q=qPar['value']
  58. pc=pcPar['value']
  59. v=vPar['value']
  60. DPC=pcPar['derivatives']
  61. DQ=qPar['derivatives']
  62. DV=vPar['derivatives']
  63. if any(['function' in qPar,'function' in pcPar, 'function' in vPar]):
  64. fq=function.to(q)
  65. fpc=function.to(pc)
  66. fv=function.to(v)
  67. f=lambda t,q=fq,pc=fpc,v=fv,s=sign:s*q(t)/v(t)/pc(t)
  68. dfdPC=lambda t,f=f,pc=fpc:-f(t)/pc(t)
  69. dPC=function.generate(dfdPC,DPC)
  70. dfdQ=lambda t,f=f,q=fq: f(t)/q(t)
  71. dQ=function.generate(dfdQ,DQ)
  72. dfdV=lambda t,f=f,v=fv: -f(t)/v(t)
  73. dV=function.generate(dfdV,DV)
  74. return function.Object(f,[dPC,dQ,dV])
  75. else:
  76. f=sign*q/v/pc
  77. return derivedObject(sign*q/v/pc,\
  78. [{'df':-f/pc,'D':DPC},\
  79. {'df':sign/v/pc,'D':DQ},\
  80. {'df':-f/v,'D':DV}])
  81. #derivatives is the combination of the above
  82. def getVolumePar(self,compartment,useVolume=1):
  83. #returnis volume name, if found and useVolume is directed,
  84. #or a standard parameter one
  85. if not useVolume:
  86. return "one"
  87. try:
  88. return self.mod["volumes"][compartment]
  89. #parV=self.mod["parameters"][parVName]
  90. except KeyError:
  91. pass
  92. return "one"
  93. def build(self):
  94. comps=self.compartments
  95. self.n=len(comps)
  96. self.fu=[lambda t:0]*self.n
  97. self.lut={c:i for (i,c) in zip(range(self.n),comps.keys())}
  98. self.dM={}
  99. self.fM=numpy.zeros((self.n,self.n))
  100. for c in comps:
  101. comp=comps[c]
  102. if 'source' in comp:
  103. self.fu[self.lut[c]]=parseFunction(comp['source'])
  104. for t in comp['targets']:
  105. arr=comp['targets'][t]
  106. if function.contains(arr):
  107. try:
  108. self.dM[self.lut[c]][self.lut[t]]=\
  109. function.sumArray(arr)
  110. except (KeyError,TypeError):
  111. self.dM[self.lut[c]]={}
  112. self.dM[self.lut[c]][self.lut[t]]=\
  113. function.sumArray(arr)
  114. else:
  115. #just set once
  116. self.fM[self.lut[c],self.lut[t]]=sum(arr)
  117. #build SE part
  118. self.buildSE()
  119. def buildSE(self):
  120. #check which parameterst to include
  121. parList=[]
  122. pars=self.parSetup['parameters']
  123. for parName in self.seJ:
  124. #print(par)
  125. par=pars[parName]
  126. usePar=calculateDerivative(par)
  127. #print('[{}]: {}'.format(usePar,par))
  128. if not usePar:
  129. continue
  130. parList.append(parName)
  131. #print(parList)
  132. self.m=len(parList)
  133. self.lutSE={c:i for (i,c) in zip(range(self.m),parList)}
  134. self.qSS={}
  135. self.SS=numpy.zeros((self.m,self.n,self.n))
  136. for parName in parList:
  137. sources=self.seJ[parName]
  138. for compartment in sources:
  139. targets=sources[compartment]
  140. for t in targets:
  141. k=self.lutSE[parName]
  142. i=self.lut[compartment]
  143. j=self.lut[t]
  144. #print('[{} {} {}] {}'.format(parName,compartment,t,targets[t]))
  145. arr=targets[t]
  146. if not function.contains(arr):
  147. self.SS[k,i,j]=sum(arr)
  148. continue
  149. ft=function.sumArray(arr)
  150. try:
  151. self.qSS[k][i][j]=ft
  152. except (KeyError,TypeError):
  153. try:
  154. self.qSS[k][i]={}
  155. self.qSS[k][i][j]=ft
  156. except (KeyError,TypeError):
  157. self.qSS[k]={}
  158. self.qSS[k][i]={}
  159. self.qSS[k][i][j]=ft
  160. def inspect(self):
  161. comps=self.compartments
  162. pars=self.parSetup['parameters']
  163. #pars=self.mod['parameters']
  164. tu=self.getTimeUnit()
  165. print('Time unit: {}'.format(tu))
  166. print('Compartments')
  167. for c in comps:
  168. print('{}/{}:'.format(c,self.lut[c]))
  169. comp=comps[c]
  170. if 'source' in comp:
  171. print('\tsource\n\t\t{}'.format(comp['source']))
  172. print('\ttargets')
  173. for t in comp['targets']:
  174. print('\t\t{}[{},{}]: {}'.format(t,self.lut[c],self.lut[t],\
  175. comp['targets'][t]))
  176. print('Flows')
  177. for f in self.flows:
  178. fName=self.flows[f]
  179. fParName=self.mod['flows'][fName]
  180. fPar=pars[fParName]
  181. print('\t{}[{}]:{} [{}]'.format(f,fName,fParName,self.get(fParName)))
  182. print('Volumes')
  183. for v in self.mod['volumes']:
  184. vParName=self.mod['volumes'][v]
  185. vPar=pars[vParName]
  186. print('\t{}:{} [{}]'.format(v,vParName,self.get(vParName)))
  187. print('Partition coefficients')
  188. for pc in self.mod['partitionCoefficients']:
  189. pcParName=self.mod['partitionCoefficients'][pc]
  190. pcPar=pars[pcParName]
  191. print('\t{}:{} [{}]'.format(pc,pcParName,self.get(pcParName)))
  192. print('SE parameters')
  193. for p in self.seJ:
  194. print(p)
  195. sources=self.seJ[p]
  196. for compartment in sources:
  197. targets=sources[compartment]
  198. for t in targets:
  199. print('\t SE bind {}/{}:{}'.format(compartment,t,targets[t]))
  200. def parse(self,setupFile,parameterFile):
  201. with open(setupFile,'r') as f:
  202. self.mod=json.load(f)
  203. with open(parameterFile,'r') as f:
  204. self.parSetup=json.load(f)
  205. for m in self.mod['compartments']:
  206. self.add_compartment(m)
  207. self.add_default_parameters()
  208. #standard parameters such as one,zero etc.
  209. for s in self.mod['sources']:
  210. #src=mod['sources'][s]
  211. self.add_source(s,self.mod['sources'][s])
  212. self.flows={}
  213. #pars=self.mod['parameters']
  214. pars=self.parSetup['parameters']
  215. for f in self.mod['flows']:
  216. #skip comments
  217. if f.find(':')<0:
  218. continue
  219. comps=f.split(':')
  220. c0=splitVector(comps[0])
  221. c1=splitVector(comps[1])
  222. for x in c0:
  223. for y in c1:
  224. pairName='{}:{}'.format(x,y)
  225. self.flows[pairName]=f
  226. for b in self.mod['bindings']['diffusion']:
  227. #whether to scale transfer constants to organ volume
  228. #default is true, but changing here will assume no scaling
  229. useVolume=1
  230. comps=b.split('->')
  231. try:
  232. pcParName=self.mod['partitionCoefficients'][b]
  233. except KeyError:
  234. pcParName="one"
  235. kParName=self.mod['bindings']['diffusion'][b]
  236. #operate with names to allow for value/function/derived infrastructure
  237. self.bind(comps[0],comps[1],kParName,pcParName,useVolume)
  238. for q in self.mod['bindings']['flow']:
  239. comps=q.split('->')
  240. srcs=splitVector(comps[0])
  241. tgts=splitVector(comps[1])
  242. for cs in srcs:
  243. for ct in tgts:
  244. #get partition coefficient
  245. try:
  246. pcParName=self.mod['partitionCoefficients'][cs]
  247. except KeyError:
  248. pcParName="one"
  249. #get flow (direction could be reversed)
  250. try:
  251. qName=self.flows['{}:{}'.format(cs,ct)]
  252. except KeyError:
  253. qName=self.flows['{}:{}'.format(ct,cs)]
  254. flowParName=self.mod['flows'][qName]
  255. #flowPar=pars[flowParName]
  256. self.bind(cs,ct,flowParName,pcParName,1)
  257. self.build()
  258. def add_default_parameters(self):
  259. pars=self.parSetup['parameters']
  260. pars['one']={'value':1}
  261. pars['zero']={'value':0}
  262. def M(self,t):
  263. for i in self.dM:
  264. for j in self.dM[i]:
  265. self.fM[i,j]=self.dM[i][j](t)
  266. #create an array and fill it with outputs of function at t
  267. return self.fM
  268. def u(self,t):
  269. ub=[f(t) for f in self.fu]
  270. return numpy.array(ub)
  271. def fSS(self,t):
  272. for k in self.qSS:
  273. for i in self.qSS[k]:
  274. for j in self.qSS[k][i]:
  275. #print('[{},{},{}] {}'.format(k,i,j,self.qSS[k][i][j]))
  276. self.SS[k,i,j]=(self.qSS[k][i][j])(t)
  277. return self.SS
  278. def fSY(self,y,t):
  279. #M number of sensitivity parameters
  280. #N number of equations
  281. #fSS is MxNxN
  282. #assume a tabulated solution y(t) at t spaced intervals
  283. qS=self.fSS(t).dot(y)
  284. #qS is MxN
  285. #but NxM is expected, so do a transpose
  286. #for simultaneous calculation, a Nx(M+1) matrix is expected
  287. tS=numpy.zeros((self.n,self.m+1))
  288. #columns from 2..M+1 are the partial derivatives
  289. tS[:,1:]=numpy.transpose(qS)
  290. #first column is the original function
  291. tS[:,0]=self.u(t)
  292. return tS
  293. def fS(self,t):
  294. #M number of sensitivity parameters
  295. #N number of equations
  296. #fSS is MxNxN
  297. #assume a tabulated solution y(t) at t spaced intervals
  298. qS=self.fSS(t).dot(self.getY(t))
  299. return numpy.transpose(qS)
  300. def getSEJ(self,parName):
  301. #find the sensitivity (SE) derivative of Jacobi with
  302. #respect to parameter
  303. try:
  304. return self.seJ[parName]
  305. except KeyError:
  306. self.seJ[parName]={}
  307. return self.seJ[parName]
  308. def getSEJ_comp(self,parName,compartmentName):
  309. #find equation dictating concentration in compartmentName
  310. #for jacobi-parameter derivative
  311. seJ=self.getSEJ(parName)
  312. try:
  313. return seJ[compartmentName]
  314. except KeyError:
  315. seJ[compartmentName]={}
  316. return seJ[compartmentName]
  317. def setY(self,t,y):
  318. self.tck=[None]*self.n
  319. for i in range(self.n):
  320. self.tck[i] = scipy.interpolate.splrep(t, y[:,i], s=0)
  321. def getY(self,t):
  322. fY=numpy.zeros(self.n)
  323. for i in range(self.n):
  324. fY[i]=scipy.interpolate.splev(t, self.tck[i], der=0)
  325. return fY
  326. def getWeight(self,parName):
  327. pars=self.parSetup['parameters']
  328. par=pars[parName]
  329. #self.get parses the units
  330. v=self.get(parName)["value"]
  331. if par['dist']=='lognormal':
  332. #this is sigma^2_lnx
  333. sln2=numpy.log(par["cv"]*par["cv"]+1)
  334. #have to multiplied by value to get the derivative
  335. #with respect to lnx
  336. return sln2*v*v
  337. else:
  338. #for Gaussian, cv is sigma/value; get sigma by value multiplication
  339. return par["cv"]*par["cv"]*v*v
  340. def getMax(lutSE):
  341. fm=-1
  342. for x in lutSE:
  343. if int(lutSE[x])>fm:
  344. fm=lutSE[x]
  345. return fm
  346. def getWeights(self,lutSE):
  347. #pars=self.parSetup['parameters']
  348. wts=numpy.zeros((model.getMax(lutSE)+1))
  349. for parName in lutSE:
  350. j=lutSE[parName]
  351. wts[j]=self.getWeight(parName)
  352. return wts
  353. def getDerivatives(self,se,i):
  354. #return latest point derivatives
  355. fse=se[-1][i]
  356. #fse is an m-vector
  357. return fse*fse
  358. def calculateUncertainty(self,se):
  359. s2out=numpy.zeros(se.shape[1:])
  360. se2=numpy.multiply(se,se)
  361. return numpy.sqrt(numpy.dot(se2,self.getWeights(self.lutSE)))
  362. def get(self,parName):
  363. pars=self.parSetup['parameters']
  364. par=pars[parName]
  365. par['name']=parName
  366. if "value" in par:
  367. return self.getValue(par)
  368. if "function" in par:
  369. return self.getFunction(par)
  370. if "derived" in par:
  371. return self.getDerived(par)
  372. print('Paramter {} not found!'.format(parName))
  373. def getValue(self,par):
  374. v=par["value"]
  375. parName=par['name']
  376. #convert to seconds
  377. try:
  378. parUnits=par['unit'].split('/')
  379. except (KeyError,IndexError):
  380. #no unit given
  381. return valueObject(v,parName)
  382. timeUnit=self.getTimeUnit()
  383. try:
  384. if parUnits[1]==timeUnit:
  385. return valueObject(v,parName)
  386. except IndexError:
  387. #no / in unit name
  388. return valueObject(v,parName)
  389. if parUnits[1]=='min' and timeUnit=='s':
  390. return valueObject(v/60,parName)
  391. if parUnits[1]=='s' and timeUnit=='min':
  392. return valueObject(60*v,parName)
  393. if parUnits[1]=='day' and timeUnit=='min':
  394. return valueObject(v/24/60,parName)
  395. if parUnits[1]=='hour' and timeUnit=='min':
  396. return valueObject(v/60,parName)
  397. #no idea what to do
  398. return valueObject(v,parName)
  399. def getFunction(self,par):
  400. fName=par['function']
  401. #print('[{}]: getFunction({})'.format(par['name'],par['function']))
  402. df=self.parSetup['functions'][fName]
  403. skip=['type']
  404. par1={x:self.get(df[x]) for x in df if x not in skip}
  405. if df['type']=='linearGrowth':
  406. #print(par1)
  407. return function.linearGrowth(par1)
  408. if df['type']=='linearGrowthFixedSlope':
  409. return function.linearGrowthFixedSlope(par1)
  410. print('Function {} not found!'.format(fName))
  411. def getDerived(self,par):
  412. dName=par['derived']
  413. d=self.parSetup['derivedParameters'][dName]
  414. #print('Derived [{}]: type {}'.format(dName,d['type']))
  415. if d['type']=='product':
  416. #print('{}*{}'.format(d['a'],d['b']))
  417. pA=self.get(d['a'])
  418. a=pA['value']
  419. DA=pA['derivatives']
  420. pB=self.get(d['b'])
  421. b=pB['value']
  422. DB=pB['derivatives']
  423. #even more generic -> df/dp=[df/dA*dA/dp+df/dB*dB/dp]
  424. if any(['function' in pA,'function' in pB]):
  425. fa=function.to(a)
  426. fb=function.to(b)
  427. f=lambda t,a=fa,b=fb:a(t)*b(t)
  428. dfdA=lambda t,b=fb: b(t)
  429. dfdB=lambda t,a=fa: a(t)
  430. dA=function.generate(dfdA,DA)
  431. dB=function.generate(dfdB,DB)
  432. return function.Object(f,[dA,dB])
  433. else:
  434. return derivedObject(a*b,[{'df':b,'D':DA},{'df':a,'D':DB}])
  435. if d['type']=='power':
  436. #print('{}^{}'.format(d['a'],d['n']))
  437. pA=self.get(d['a'])
  438. a=pA['value']
  439. DA=pA['derivatives']
  440. pN=self.get(d['n'])
  441. n=pN['value']
  442. DN=pN['derivatives']
  443. if any(['function' in pA,'function' in pN]):
  444. fa=function.to(a)
  445. fn=function.to(n)
  446. f=lambda t,a=fa,n=fn:numpy.power(a(t),n(t))
  447. dfdA=lambda t,n=fn,f=f,a=fa:n(t)*f(t)/a(t)
  448. dfdN=lambda t,a=fa,f=f:numpy.log(a(t))*f(t)
  449. dA=function.generate(dfdA,DA)
  450. dN=function.generate(dfdN,DN)
  451. return function.Object(f,[dA,dN])
  452. else:
  453. f=numpy.power(a,n)
  454. return derivedObject(f,[{'df':n*f/a,'D':DA},{'df':f*numpy.log(a),'D':DN}])
  455. if d['type']=='ratio':
  456. #print('{}/{}'.format(d['a'],d['b']))
  457. pA=self.get(d['a'])
  458. a=pA['value']
  459. DA=pA['derivatives']
  460. pB=self.get(d['b'])
  461. b=pB['value']
  462. DB=pB['derivatives']
  463. #even more generic -> df/dp=[df/dA*dA/dp+df/dB*dB/dp]
  464. if any(['function' in pA,'function' in pB]):
  465. fa=function.to(a)
  466. fb=function.to(b)
  467. f=lambda t,a=fa,b=fb,:a(t)/b(t)
  468. dfdA=lambda t,f=f,a=fa: f(t)/a(t)
  469. dfdB=lambda t,f=f,b=fb: -f(t)/b(t)
  470. dA=function.generate(dfdA,DA)
  471. dB=function.generate(dfdB,DB)
  472. return function.Object(f,[dA,dB])
  473. else:
  474. return derivedObject(a/b,[{'df':1/b,'D':DA},{'df':-a/b/b,'D':DB}])
  475. if d['type']=='sum':
  476. #print('{}+{}'.format(d['a'],d['b']))
  477. pA=self.get(d['a'])
  478. a=pA['value']
  479. DA=pA['derivatives']
  480. pB=self.get(d['b'])
  481. b=pB['value']
  482. DB=pB['derivatives']
  483. #even more generic -> df/dp=[df/dA*dA/dp+df/dB*dB/dp]
  484. if any(['function' in pA,'function' in pB]):
  485. fa=function.to(a)
  486. fb=function.to(b)
  487. f=lambda t,a=fa,b=fb,:a(t)+b(t)
  488. dfdA=lambda t: 1
  489. dfdB=lambda t: 1
  490. dA=function.generate(dfdA,DA)
  491. dB=function.generate(dfdB,DB)
  492. return function.Object(f,[dA,dB])
  493. else:
  494. return derivedObject(a+b,[{'df':1,'D':DA},{'df':1,'D':DB}])
  495. def calculateDerivative(par):
  496. #add derivatives if dist(short for distribution) is specified
  497. return "dist" in par
  498. def sumValues(dArray,x):
  499. s=0
  500. for a in dArray:
  501. try:
  502. s+=a[x]
  503. except KeyError:
  504. continue
  505. return s
  506. def valueObject(v,parName):
  507. #convert everything to functions
  508. d0={parName:1}
  509. return {'value':v,'derivatives':{parName:1}}
  510. def derivedObject(f,ders):
  511. o={'value':f}
  512. DD=[]
  513. for d in ders:
  514. df=d['df']
  515. D=d['D']
  516. DD.append({x:df*D[x] for x in D})
  517. allKeys=[]
  518. for x in DD:
  519. allKeys.extend(x.keys())
  520. allKeys=list(set(allKeys))
  521. o['derivatives']={x:sumValues(DD,x) for x in allKeys}
  522. return o
  523. def splitVector(v):
  524. if v.find('(')<0:
  525. return [v]
  526. return v[1:-1].split(',')
  527. def parseFunction(formula):
  528. if formula['name']=='exponential':
  529. c0=formula['constant']
  530. k=formula['k']
  531. return lambda t,c=c0,k=k:c*numpy.exp(k*t)
  532. if formula['name']=='constant':
  533. c0=formula['value']
  534. return lambda t,c0=c0:c0
  535. if formula['name']=='Heavyside':
  536. t0=formula['limit']
  537. v=formula['value']
  538. return lambda t,v=v,t0=t0:v if t<t0 else 0
  539. return lambda t:1
  540. def addValue(qdict,compName,v):
  541. #add function to compName of dictionary qdict,
  542. #check if compName exists and handle the potential error
  543. #lambda functions can't be summed directly, so qdict is a list
  544. #that will be merged at matrix generation time
  545. try:
  546. qdict[compName].append(v)
  547. except KeyError:
  548. qdict[compName]=[v]
  549. #also add derivatives
  550. #
  551. # for d in dTarget:
  552. # ctarget=self.getSEJ_comp(d,target)
  553. # addValue(ctarget,target,dTarget[d])
  554. def get(timeUnit,par):
  555. v=par["value"]
  556. #convert to seconds
  557. try:
  558. parUnits=par['unit'].split('/')
  559. except (KeyError,IndexError):
  560. #no unit given
  561. return v
  562. try:
  563. if parUnits[1]==timeUnit:
  564. return v
  565. except IndexError:
  566. #no / in unit name
  567. return v
  568. if parUnits[1]=='min' and timeUnit=='s':
  569. return v/60
  570. if parUnits[1]=='s' and timeUnit=='min':
  571. return 60*v
  572. #no idea what to do
  573. return v