function [globalPar, cPars] = ... fitCentersPixel(path, patientID, cax, cm, centers,sigma2) %path is the core directory %cax are the mid intervals in images %cm are the interval durations (1,n) %data are the images %nclass is number of typical responses sought npar=1; nglob=2; nclass=size(centers,1); cm2=ones(nclass,1)*cm'; %w=sqrt(cm2.*centers)./sum(cm2.*centers,2); w=ones(nclass,1)*sqrt(cm)'; %make sure that the function that is most similar to input function has %a high weight on maximum value, which comes as the second reading %abandonded, because decay time gets shortened and fitting of the slow %rise is given up in favor of meeting the high point through k1 value %[~,im]=max(centers(:,2)); %w(im,2)=w(im,2)+0.1*(sqrt(max(cm))-w(im,2)); %cax are the delays %c valueGeneratorSettings.type='poisson'; valueGeneratorSettings.parameters=[25]; valueGeneratorSettings.u=[0,Inf]; ivar=2; valueGeneratorSettings(ivar).type='loggaus'; valueGeneratorSettings(ivar).parameters=[1.5,1];%log10(mean),log10(std) valueGeneratorSettings(ivar).u=[0,Inf]; ivar=ivar+1; valueGeneratorSettings(ivar).type='loggaus'; valueGeneratorSettings(ivar).parameters=[-1,1];%log10(mean),log10(std) valueGeneratorSettings(ivar).u=[0,Inf]; ivar=ivar+1; valueGeneratorSettings(ivar).type='gaus'; valueGeneratorSettings(ivar).parameters=[10,2];%log10(mean),log10(std) valueGeneratorSettings(ivar).u=[-Inf,Inf]; ivar=ivar+1; %for individual fits valueGeneratorSettings1.type='loggaus'; valueGeneratorSettings1.parameters=[-3,1]; valueGeneratorSettings1.u=[0,Inf]; ivar=2; valueGeneratorSettings1(ivar).type='flat'; valueGeneratorSettings1(ivar).parameters=[0,1]; valueGeneratorSettings1(ivar).u=[0,1]; ivar=ivar+1; valueGeneratorSettings1(ivar).type='loggaus'; valueGeneratorSettings1(ivar).parameters=[-7,2]; valueGeneratorSettings1(ivar).u=[0,Inf]; ivar=ivar+1; valueGeneratorSettings1(ivar).type='gaus'; valueGeneratorSettings1(ivar).parameters=[10,5]; valueGeneratorSettings1(ivar).u=[0,Inf]; options = optimoptions(@lsqnonlin); options.Display='off'; %[options.OptimalityTolerance,options.FunctionTolerance,options.StepTolerance]; %holds best estimate fmin=1e30; n=20; n1=20; imin=-1; nFitIndividual=4; qfit=zeros(1,nFitIndividual*nclass); qfitmin=qfit; [x,ul,ub]=generateInitialValues(valueGeneratorSettings); for i=1:n %first estimate input functions %take function with maximum response as IVF surrogate %assume first row (ventricle) is the input function %sometimes maximum crops up in unexpected places. Assume maximum %response is the best IVF estimate [m mi]=max(centers); [fm mj]=max(m); cay=centers(mi(mj),:)'; %cay=centers(1,:)'; w=ones(size(cay)); fun=@(x)evaluateSingleDiffZero(cax,cay,w,x); [x0,ul,ub]=generateInitialValues(valueGeneratorSettings); [x1,resnorm,residual,exitflag,output,lambda,jacobian] = lsqnonlin(fun,x0,ul,ub,options); fprintf('A %f\n',x1(1)); while x1(1)<1 [x0,ul,ub]=generateInitialValues(valueGeneratorSettings); [x1,resnorm,residual,exitflag,output,lambda,jacobian] = lsqnonlin(fun,x0,ul,ub,options); fprintf('A %f\n',x1(1)); end %this gets A, tau and alpha %A shouldn't be trivial fprintf('[%d] Global fit: (%f,%f,%f %f) (%f,%f,%f %f)\n',i,x0(1),x0(2),x0(3),x0(4),... x1(1),x1(2),x1(3),x1(4)); chiSum=0; %now fit every curve individually with the known input function for j=1:nclass cay=centers(j,:)'; w=sqrt(cm); fun1=@(par)evaluateSingleDiff(cax,cay,w,x1,par); qpar=zeros(1,4); qmin=1e30; for k=1:n1 [par0,ul1,ub1]=generateInitialValues(valueGeneratorSettings1); [par1,resnorm,residual,exitflag,output,lambda,jacobian] = ... lsqnonlin(fun1,par0,ul1,ub1,options); fchi2=sqrt(residual'*residual); if fchi20.4,1)=0; %reset k1 for those where k2 is abnormally large %cPars(cPars(:,3)>1,1)=0; opath=fullfile(path,patientID); plotFunctions(opath,code,globalPar,cPars,cax,centers); end