function [globalPar, cPars, xa, U] = ... fitFromClusters(path, cax, cm, data, nclass, realizationId) %path is the core directory %cax are the mid intervals in images %cm are the interval durations (1,n) %data are the images %nclass is number of typical responses sought npar=3; nglob=3; %correct plotFunctions and evaluateCenterDiff c1=size(cax,1); A=reshape(data,[],c1); %find most common responses %nclass=10; [centers,U]=fcm(A,nclass); %data(ix,iy,iz,:)=A((iz-1)*i1*i2+(iy-1)*i1+ix,:) cm2=ones(size(centers,1),1)*cm'; %w=sqrt(cm2.*centers)./sum(cm2.*centers,2); w=ones(size(centers,1),1)*sqrt(cm)'; pars=cax(1:2)'; fun=@(x)evaluateCenterDiff(cax,centers,w,pars,x(1:nglob),... reshape(x(nglob+1:nglob+npar*nclass),[],nclass)'); %cax are the delays %c valueGeneratorSettings.type='poisson'; valueGeneratorSettings.parameters=[25];%mu valueGeneratorSettings.u=[0,Inf]; ivar=2; valueGeneratorSettings(ivar).type='loggaus'; valueGeneratorSettings(ivar).parameters=[1.5,1];%log10(mean),log10(std) valueGeneratorSettings(ivar).u=[0,Inf]; ivar=ivar+1; valueGeneratorSettings(ivar).type='loggaus'; valueGeneratorSettings(ivar).parameters=[-1,1];%log10(mean),log10(std) valueGeneratorSettings(ivar).u=[0,Inf]; ivar=ivar+1; for j=1:nclass valueGeneratorSettings(ivar).type='loggaus'; valueGeneratorSettings(ivar).parameters=[-3,1]; valueGeneratorSettings(ivar).u=[0,Inf]; ivar=ivar+1; valueGeneratorSettings(ivar).type='flat'; valueGeneratorSettings(ivar).parameters=[0,1]; valueGeneratorSettings(ivar).u=[0,1]; ivar=ivar+1; valueGeneratorSettings(ivar).type='loggaus'; valueGeneratorSettings(ivar).parameters=[-7,2]; valueGeneratorSettings(ivar).u=[0,Inf]; ivar=ivar+1; end %for individual fits valueGeneratorSettings1.type='loggaus'; valueGeneratorSettings1.parameters=[-3,1]; valueGeneratorSettings1.u=[0,Inf]; ivar=2; valueGeneratorSettings1(ivar).type='flat'; valueGeneratorSettings1(ivar).parameters=[0,1]; valueGeneratorSettings1(ivar).u=[0,1]; ivar=ivar+1; valueGeneratorSettings1(ivar).type='loggaus'; valueGeneratorSettings1(ivar).parameters=[-7,2]; valueGeneratorSettings1(ivar).u=[0,Inf]; [x0,ul,ub]=generateInitialValues(valueGeneratorSettings); options = optimoptions(@lsqnonlin); options.Display='off'; %[options.OptimalityTolerance,options.FunctionTolerance,options.StepTolerance]; %holds best estimate x=x0; fmin=1e30; n=20; n1=20; imin=-1; for i=1:n %find best fit for nclass responses. %total number of points that are fitted is 20*nclass, total number of %parameters estimated is 4+3*nclass [x1,resnorm,residual,exitflag,output,lambda,jacobian] = lsqnonlin(fun,x0,ul,ub,options); %this gets tau and A %now fit every curve individually with the known input function for j=1:nclass cay=centers(j,:)'; w=ones(size(cay)); fun1=@(par)evaluateSingleDiff(cax,cay,w,pars,x1,par); qpar=zeros(1,3); qmin=1e30; for k=1:n1 [par0,ul1,ub1]=generateInitialValues(valueGeneratorSettings1); [par1,resnorm,residual,exitflag,output,lambda,jacobian] = ... lsqnonlin(fun1,par0,ul1,ub1,options); fchi2=sqrt(residual*residual'); if fchi20.4,1)=0; %reset k1 for those where k2 is abnormally large %cPars(cPars(:,3)>1,1)=0; plotFunctions(path,globalPar,cPars,cax,centers); dt=size(data); k1v=U'*cPars(:,1); xa(:,:,:,1)=reshape(k1v,dt(1:3)); vbfv=U'*cPars(:,2); xa(:,:,:,2)=reshape(vbfv,dt(1:3)); k2v=U'*cPars(:,3); xa(:,:,:,3)=reshape(k2v,dt(1:3)); end