function [globalPar, cPars] = ... fitCentersIVF(path, patientID, realizationId, cax, cm, centers) %path is the core directory %cax are the mid intervals in images %cm are the interval durations (1,n) %data are the images %nclass is number of typical responses sought npar=1; nglob=2; nclass=size(centers,1); cm2=ones(nclass,1)*cm'; %w=sqrt(cm2.*centers)./sum(cm2.*centers,2); w=ones(nclass,1)*sqrt(cm)'; %make sure that the function that is most similar to input function has %a high weight on maximum value, which comes as the second reading %abandonded, because decay time gets shortened and fitting of the slow %rise is given up in favor of meeting the high point through k1 value %[~,im]=max(centers(:,2)); %w(im,2)=w(im,2)+0.1*(sqrt(max(cm))-w(im,2)); %for individual fits valueGeneratorSettings1.type='loggaus'; valueGeneratorSettings1.parameters=[-3,1]; valueGeneratorSettings1.u=[0,Inf]; ivar=2; valueGeneratorSettings1(ivar).type='flat'; valueGeneratorSettings1(ivar).parameters=[0,1]; valueGeneratorSettings1(ivar).u=[0,1]; ivar=ivar+1; valueGeneratorSettings1(ivar).type='loggaus'; valueGeneratorSettings1(ivar).parameters=[-7,2]; valueGeneratorSettings1(ivar).u=[0,Inf]; ivar=ivar+1; valueGeneratorSettings1(ivar).type='gaus'; valueGeneratorSettings1(ivar).parameters=[10,5]; valueGeneratorSettings1(ivar).u=[0,Inf]; options = optimoptions(@lsqnonlin); options.Display='off'; %[options.OptimalityTolerance,options.FunctionTolerance,options.StepTolerance]; %holds best estimate n1=20; nFitIndividual=4; qfit=zeros(1,nFitIndividual*nclass); %use input functions estimate from center fits p=[readFitParameters(path,patientID,10); ... readFitParameters(path,patientID,20); ... readFitParameters(path,patientID,30)]; fp=median(p);%4 values, const, fall & rise time, delay fprintf('Global fit: (%f,%f,%f %f)\n',fp(1),fp(2),fp(3),fp(4)); chiSum=0; %now fit every curve individually with the known input function for j=1:nclass cay=centers(j,:)'; w=sqrt(cm); fun1=@(par)evaluateSingleDiff(cax,cay,w,fp,par); qpar=zeros(1,4); qmin=1e30; for k=1:n1 [par0,ul1,ub1]=generateInitialValues(valueGeneratorSettings1); [par1,resnorm,residual,exitflag,output,lambda,jacobian] = ... lsqnonlin(fun1,par0,ul1,ub1,options); fchi2=sqrt(residual'*residual); if fchi2<qmin qmin=fchi2; qpar=par1; end end qfit((j-1)*nFitIndividual+1:j*nFitIndividual)=qpar; fprintf('Center: %d (%f %f %f %f)/(%f %f %f %f)\n',j,... par0(1),par0(2),par0(3),par0(4),... par1(1),par1(2),par1(3),par1(4)); %residual chiSum=chiSum+qmin; end %writematrix(ci,fullfile(path,sprintf('CI%d.txt',i)),'Delimiter','tab'); %output chi2=chiSum; fprintf('Done %f\n',chi2); %this is the result that will be used by k1 calculator code=sprintf('%s_%d_%d_IVF',patientID,nclass,realizationId); ofile=fullfile(path,patientID,sprintf('%s_fitParFinal.txt',code)); try writematrix([chi2 fp qfit],ofile,'Delimiter','tab'); catch ME dlmwrite(ofile,[chi2 fp qfit],'\t'); end %ofile=fullfile(path,sprintf('CIFinal_%d_%d.txt',nclass,realizationId)); %writematrix(fci,ofile,'Delimiter','tab'); globalPar=[fp(1:4) 0 0]; cPars=reshape(qfit,[],nclass)'; %reset k1 for those where BVF is nearly one %cPars(cPars(:,2)>0.4,1)=0; %reset k1 for those where k2 is abnormally large %cPars(cPars(:,3)>1,1)=0; opath=fullfile(path,patientID); plotFunctions(opath,code,globalPar,cPars,cax,centers); end