{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#functions used in final analysis\n",
    "def getWeights(locDir,p,nclass,realizationId):\n",
    "    #for w1, classes are in 0 to nclass-1 space\n",
    "    \n",
    "    segmFile=os.path.join(locDir,p,p+'_Segm.nrrd')\n",
    "    imS=SimpleITK.ReadImage(segmFile)\n",
    "    nS=SimpleITK.GetArrayFromImage(imS)\n",
    "    \n",
    "    unit=numpy.ones(nS.shape)\n",
    "    w={region:numpy.zeros(nclass) for region in numpy.arange(1,10)}\n",
    "    w1={region:{} for region in w}\n",
    "    \n",
    "    sUnit={region:numpy.sum(unit[nS==region]) for region in w}\n",
    "                            \n",
    "    for c in numpy.arange(nclass):\n",
    "        uFile=os.path.join(locDir,p,'{}_{}_{}_center{}_centerWeigth.nrrd'.format(p,nclass,realizationId,c+1))\n",
    "        imU=SimpleITK.ReadImage(uFile)\n",
    "        nU=SimpleITK.GetArrayFromImage(imU)\n",
    "        \n",
    "        for region in w:\n",
    "            v=nU[(nS==region) ]\n",
    "            #print('{}: {}'.format(region,v.shape))\n",
    "            w[region][c]=numpy.sum(v)/sUnit[region]\n",
    "            w1[region][c]=v\n",
    "            #print('[{}/{}]: {}'.format(region,j,w[region,j]))\n",
    "    return w,w1\n",
    "\n",
    "def getFuzziness(locDir,p,nclass,realizationId):\n",
    "    \n",
    "    segmFile=os.path.join(locDir,p,p+'_Segm.nrrd')\n",
    "    imS=SimpleITK.ReadImage(segmFile)\n",
    "    nS=SimpleITK.GetArrayFromImage(imS)\n",
    "    \n",
    "    w={region:0 for region in numpy.arange(1,10)}\n",
    "    nU={}\n",
    "    for c in numpy.arange(nclass):\n",
    "        uFile=os.path.join(locDir,p,'{}_{}_{}_center{}_centerWeigth.nrrd'.format(p,nclass,realizationId,c+1))\n",
    "        imU=SimpleITK.ReadImage(uFile)\n",
    "        fy=SimpleITK.GetArrayFromImage(imU)\n",
    "        \n",
    "        for region in w:\n",
    "            fy1=fy[(nS==region)]\n",
    "            try:\n",
    "                nU[region][:,c]=fy1\n",
    "            except KeyError:\n",
    "                nU[region]=numpy.zeros((len(fy1),nclass))\n",
    "                nU[region][:,c]=fy1\n",
    "    for u in nU:\n",
    "        w[u]=numpy.mean(nU[u].max(1))\n",
    "    return w\n",
    "    \n",
    "\n",
    "def getFitPar(locDir,p,nclass,realizationId):\n",
    "    #fitGoodnes A tau alpha delay [k1 BVF k2 delay]xNcenters\n",
    "    uFile=os.path.join(locDir,p,'{}_{}_{}_fitParFinal.txt'.format(p,nclass,realizationId))\n",
    "    return numpy.genfromtxt(uFile,delimiter='\\t')\n",
    "\n",
    "def getK1(fitPar,iclass):\n",
    "    #fitGoodnes A tau alpha delay [k1 BVF k2 delay]xNcenters\n",
    "    #0 to nclass-1 space\n",
    "    return fitPar[4*iclass+5]\n",
    "\n",
    "def calculateK1(w1,fitPar,range=1.0, nbins=50):\n",
    "    #returns k1 by pixel in w1\n",
    "    histM={}\n",
    "    histW={}\n",
    "    classWeightM={}\n",
    "    classWeightW={}\n",
    "    fuzzy={}\n",
    "    std={'W':{},'M':{}}\n",
    "    median={'W':{},'M':{}}\n",
    "    f90p={'W':{},'M':{}}\n",
    "    f95p={'W':{},'M':{}}\n",
    "    mean={'W':{},'M':{}}\n",
    "    for region in w1:\n",
    "        vTempl=w1[region][list(w1[region].keys())[0]]#should by a numpy array with shape (npx,)\n",
    "        v={v:{} for v in numpy.arange(len(vTempl))}\n",
    "        for c in w1[region]:\n",
    "            for i in v:\n",
    "                v[i][c]=w1[region][c][i]\n",
    "        fuzzy[region]=0\n",
    "        k1W=numpy.zeros(vTempl.shape)\n",
    "        k1M=numpy.zeros(vTempl.shape)\n",
    "        cW=numpy.zeros(len(w1[region]))#number of classes\n",
    "        cM=numpy.zeros(len(w1[region]))#number of classes\n",
    "        for i in v:\n",
    "            maxClass=max(v[i],key=v[i].get)\n",
    "            maxValue=v[i][maxClass]\n",
    "            fuzzy[region]+=maxValue\n",
    "            k1W[i]=0\n",
    "            for c in v[i]:\n",
    "                k1W[i]+=v[i][c]*getK1(fitPar,c)\n",
    "                cW[c]+=v[i][c]\n",
    "            k1M[i]=getK1(fitPar,maxClass)\n",
    "            cM[maxClass]+=1\n",
    "            #print('[{},{}:{}] {},{}'.format(i,max(v[i],key=v[i].get),max(v[i].values()),k1W[i],k1M[i]))\n",
    "        histM[region]=numpy.histogram(60*k1M,bins=nbins,range=(0,range))\n",
    "        histW[region]=numpy.histogram(60*k1W,bins=nbins,range=(0,range))\n",
    "        mean['M'][region]=numpy.mean(k1M)\n",
    "        mean['W'][region]=numpy.mean(k1W)\n",
    "        std['M'][region]=numpy.std(k1M)\n",
    "        std['W'][region]=numpy.std(k1W)\n",
    "        median['M'][region]=numpy.median(k1M)\n",
    "        median['W'][region]=numpy.median(k1W)\n",
    "        f90p['M'][region]=numpy.percentile(k1M,90)\n",
    "        f90p['W'][region]=numpy.percentile(k1W,90)\n",
    "        f95p['M'][region]=numpy.percentile(k1M,95)\n",
    "        f95p['W'][region]=numpy.percentile(k1W,95)\n",
    "            \n",
    "        numpy.set_printoptions(precision=3)\n",
    "        cM/=len(v)\n",
    "        cW/=len(v)\n",
    "        classWeightM[region]=cM\n",
    "        classWeightW[region]=cW\n",
    "        for c1,c2 in zip(cM,cW):\n",
    "            pass\n",
    "            #print('{}/{:.2f}'.format(c1,c2))\n",
    "        fuzzy[region]/=len(v)\n",
    "        \n",
    "    return fuzzy,histM,histW,classWeightM,classWeightW,mean,std,median,f90p,f95p\n",
    "\n",
    "def makePlot(h):\n",
    "    width = numpy.diff(h[1])\n",
    "    center = (h[1][:-1] + h[1][1:]) / 2\n",
    "    y=h[0]\n",
    "    return center,y,width\n",
    "\n",
    "def median(x,y):\n",
    "    N=numpy.sum(y)\n",
    "    s=0\n",
    "    i=0\n",
    "    while s<0.5*N:\n",
    "        s+=y[i]\n",
    "        i+=1\n",
    "    return x[i]\n",
    "\n",
    "def mean(x,y):\n",
    "    return sum(x*y)/sum(y)\n",
    "\n",
    "#updates k1 values in ImagingData tables by averaging over realizations\n",
    "#used calculateK1, getWeights and getFitPar\n",
    "\n",
    "def updatePatient(db,fb,project, locDir,patient, nclass):\n",
    "    idFilter={'variable':'PatientId','value':patient,'oper':'eq'}\n",
    "    ds=db.selectRows(project,'study','Imaging',[idFilter])\n",
    "    rows=ds['rows']\n",
    "    #rows=[ds['rows'][1]]\n",
    "    rId=1\n",
    "    hMy={}\n",
    "    hMx={}\n",
    "    hMw={}\n",
    "\n",
    "    hMean={}\n",
    "    hStd={}\n",
    "    hMedian={}\n",
    "    h90p={}\n",
    "    h95p={}\n",
    "\n",
    "    selectFlag='M'\n",
    "\n",
    "    for r in rows:\n",
    "        pId=r['PatientId']\n",
    "        if pId.find('8')==0:\n",
    "            continue\n",
    "        state='MIR'\n",
    "        if r['SequenceNum']>1:\n",
    "            state='OBR'\n",
    "        p=r['aliasID']\n",
    "\n",
    "        for rId in numpy.arange(1,21):\n",
    "            w,w1=getWeights(locDir,p,nclass,rId)\n",
    "            fitPar=getFitPar(locDir,p,nclass,rId)\n",
    "            fz,hM,hW,cM,cW,mean,qstd,qmedian,f90p,f95p=\\\n",
    "                calculateK1(w1,fitPar,range=0.8)\n",
    "            #x,y,w = makePlot(hW[7])\n",
    "            #matplotlib.pyplot.bar(x,y,width=w)\n",
    "            #matplotlib.pyplot.text(0.3,20,'{} {}'.format(state,rId))\n",
    "            #matplotlib.pyplot.show()\n",
    "            for r in w1:\n",
    "                if selectFlag=='M':\n",
    "                    x,y,w = makePlot(hM[r])\n",
    "                else:\n",
    "                    x,y,w = makePlot(hW[r])\n",
    "                try:\n",
    "                    fy=hMy[r][state]\n",
    "                    hMy[r][state]=fy+y\n",
    "                except KeyError:\n",
    "                    try:\n",
    "                        hMy[r][state]=y\n",
    "                        hMx[r][state]=x\n",
    "                        hMw[r][state]=w\n",
    "                    except KeyError:\n",
    "                        hMy[r]={}\n",
    "                        hMx[r]={}\n",
    "                        hMw[r]={}\n",
    "                        hMy[r][state]=y\n",
    "                        hMx[r][state]=x\n",
    "                        hMw[r][state]=w\n",
    "                try:\n",
    "                    hMean[r][state].append(mean[selectFlag][r])\n",
    "                    hMedian[r][state].append(qmedian[selectFlag][r])\n",
    "                    hStd[r][state].append(qstd[selectFlag][r])\n",
    "                    h90p[r][state].append(f90p[selectFlag][r])\n",
    "                    h95p[r][state].append(f95p[selectFlag][r])\n",
    "                except KeyError:\n",
    "                    try:\n",
    "                        hMean[r][state]=[]\n",
    "                        hMedian[r][state]=[]\n",
    "                        hStd[r][state]=[]\n",
    "                        h90p[r][state]=[]\n",
    "                        h95p[r][state]=[]\n",
    "                    except KeyError:\n",
    "                        hMean[r]={}\n",
    "                        hMedian[r]={}\n",
    "                        hStd[r]={}\n",
    "                        h90p[r]={}\n",
    "                        h95p[r]={}\n",
    "\n",
    "\n",
    "    #generate table\n",
    "    nclassFilter={'variable':'nclass','value':str(nclass),'oper':'eq'}\n",
    "    ds=db.selectRows(project,'study','ImagingData',[idFilter,nclassFilter])\n",
    "\n",
    "    for qrow in ds['rows']:\n",
    "        r=qrow['regionId']\n",
    "\n",
    "        ymax=-1e30\n",
    "        s={}\n",
    "        for state in hMy[r]:\n",
    "            y=hMy[r][state]\n",
    "            x=hMx[r][state]\n",
    "            s[state]=sum(x*y)/numpy.sum(y)\n",
    "            s[state]=median(x,y)\n",
    "            if max(y)>ymax:\n",
    "                ymax=max(y)\n",
    "            matplotlib.pyplot.bar(hMx[r][state],hMy[r][state],width=hMw[r][state])\n",
    "\n",
    "            #fill variables\n",
    "            qrow['k1'+state+'Mean']=numpy.mean(hMean[r][state])\n",
    "            qrow['k1'+state+'MeanStd']=numpy.std(hMean[r][state])\n",
    "            qrow['k1'+state+'Median']=numpy.mean(hMedian[r][state])\n",
    "            qrow['k1'+state+'MedianStd']=numpy.std(hMedian[r][state])\n",
    "            qrow['k1'+state+'Std']=numpy.mean(hStd[r][state])\n",
    "            qrow['k1'+state+'StdStd']=numpy.std(hStd[r][state])\n",
    "            qrow['k1'+state+'90p']=numpy.mean(h90p[r][state])\n",
    "            qrow['k1'+state+'90pStd']=numpy.std(h90p[r][state])\n",
    "            qrow['k1'+state+'95p']=numpy.mean(h90p[r][state])\n",
    "            qrow['k1'+state+'95pStd']=numpy.std(h90p[r][state])\n",
    "\n",
    "        p=qrow['PatientId']\n",
    "        oDir=os.path.join(locDir,p)\n",
    "        oDirRemote=fb.buildPathURL(project,[p]);\n",
    "        qrow['k1RatioMean']=qrow['k1MIRMean']/qrow['k1OBRMean']\n",
    "        qrow['k1RatioMedian']=qrow['k1MIRMedian']/qrow['k1OBRMedian']\n",
    "        qrow['k1Ratio90p']=qrow['k1MIR90p']/qrow['k1OBR90p']\n",
    "        qrow['k1Ratio95p']=qrow['k1MIR95p']/qrow['k1OBR95p']\n",
    "        db.modifyRows('update',project,'study','ImagingData',[qrow])\n",
    "        matplotlib.pyplot.text(0.4,0.95*ymax,'{} region:{}'.format(qrow['PatientId'], r))\n",
    "        matplotlib.pyplot.text(0.4,0.85*ymax,'k1={:.2f}/min k2={:.2f}/min'.format(s['MIR'], s['OBR']))\n",
    "        matplotlib.pyplot.text(0.4,0.75*ymax,'R={:.2f}'.format(s['OBR']/s['MIR']))\n",
    "        fname='{}_{}_{}_k1Distribution.png'.format(p,nclass,r)\n",
    "        matplotlib.pyplot.savefig(os.path.join(oDir,fname))\n",
    "        fb.writeFileToFile(os.path.join(oDir,fname),oDirRemote+'/'+fname)\n",
    "        matplotlib.pyplot.show()\n",
    "        \n",
    "        \n",
    "def getReadings(db,fb,project, locDir,patient, nclass, state, region):\n",
    "    readings=[]\n",
    "    idFilter={'variable':'PatientId','value':patient,'oper':'eq'}\n",
    "    if state=='MIR':\n",
    "        seqNum=1\n",
    "    else:\n",
    "        seqNum=2\n",
    "    seqFilter={'variable':'SequenceNum','value':str(seqNum),'oper':'eq'}\n",
    "    ds=db.selectRows(project,'study','Imaging',[idFilter,seqFilter])\n",
    "    r=ds['rows'][0]\n",
    "    p=r['aliasID']\n",
    "    weightOption='M'\n",
    "    for realizationId in numpy.arange(1,21):\n",
    "        w,w1=getWeights(locDir,p,nclass,realizationId)\n",
    "        fitPar=getFitPar(locDir,p,nclass,realizationId)\n",
    "        fz,hM,hW,cM,cW,mean,qstd,qmedian,f90p,f95p=calculateK1(w1,fitPar,range=0.8)\n",
    "        readings.append(qmedian[weightOption][region])\n",
    "    return readings\n",
    "\n",
    "import matplotlib.pyplot\n",
    "import matplotlib.image as mpimg\n",
    "import json\n",
    "\n",
    "#extract patient values for a particular realization,\n",
    "#return region averages and histograms of k1 in region\n",
    "#based on pixel selection criteria, which is either 'M' \n",
    "#for maximum probability or 'W' for probability weighted contribution\n",
    "#of cluster in each pixel (see calculate K1)\n",
    "\n",
    "#fill ImageDataRealization\n",
    "def getPatient(db,fb,project, locDir,patient, nclass, realizationId,\\\n",
    "               state, region):\n",
    "    avgMode='M'\n",
    "    idFilter={'variable':'PatientId','value':patient,'oper':'eq'}\n",
    "    if state=='MIR':\n",
    "        seqNum=1\n",
    "    else:\n",
    "        seqNum=2\n",
    "    seqFilter={'variable':'SequenceNum','value':str(seqNum),'oper':'eq'}\n",
    "    ds=db.selectRows(project,'study','Imaging',[idFilter,seqFilter])\n",
    "    r=ds['rows'][0]\n",
    "    \n",
    "    p=r['aliasID']\n",
    "    oDirRemote=fb.buildPathURL(project,[p]);\n",
    "    \n",
    "    w,w1=getWeights(locDir,p,nclass,realizationId)\n",
    "    fitPar=getFitPar(locDir,p,nclass,realizationId)\n",
    "    fz,hM,hW,cM,cW,mean,qstd,qmedian,f90p,f95p=calculateK1(w1,fitPar,range=0.8)\n",
    "    #plot most common responses\n",
    "    cmSort=numpy.flip(numpy.argsort(cM[region]))\n",
    "    \n",
    "    #last argument\n",
    "    for i in numpy.arange(3):\n",
    "        idx=cmSort[i]\n",
    "        #print('{}: {}'.format(idx,cM[region][idx]))\n",
    "        fname='{}_{}_{}_centers{}.png'.format(p,nclass,realizationId,idx+1)\n",
    "        fp=os.path.join(locDir,p,fname)\n",
    "        img = mpimg.imread(fp)\n",
    "        #imgplot = matplotlib.pyplot.imshow(img)\n",
    "        #matplotlib.pyplot.show()\n",
    "        rf=oDirRemote+'/'+fname\n",
    "        if not fb.entryExists(rf):\n",
    "            fb.writeFileToFile(fp,rf)  \n",
    "    \n",
    "    realizationFilter={'variable':'realizationId','value':str(realizationId),'oper':'eq'}\n",
    "    stateFilter={'variable':'state','value':state,'oper':'eq'}\n",
    "    nclassFilter={'variable':'nclass','value':str(nclass),'oper':'eq'}\n",
    "    regionFilter={'variable':'regionId','value':str(region),'oper':'eq'}\n",
    "    \n",
    "    #fill database\n",
    "    dsQ=db.selectRows(project,'study','ImagingDataRealization',[idFilter,stateFilter,nclassFilter,regionFilter,realizationFilter])\n",
    "    if len(dsQ['rows'])>0:\n",
    "        qrow=dsQ['rows'][0]\n",
    "        mode='update'\n",
    "    else:\n",
    "        qrow={}\n",
    "        qrow['PatientId']=patient\n",
    "        qrow['SequenceNum']=nclass+0.01*region+0.0001*realizationId\n",
    "        if state!='MIR':\n",
    "            qrow['SequenceNum']+=1\n",
    "        qrow['realizationId']=int(realizationId)\n",
    "        qrow['state']=state\n",
    "        qrow['nclass']=int(nclass)\n",
    "        qrow['regionId']=int(region)\n",
    "        mode='insert'\n",
    "    \n",
    "    qrow['k1Mean']=mean[avgMode][region]\n",
    "    qrow['k1Median']=qmedian[avgMode][region]\n",
    "    qrow['k190p']=f90p[avgMode][region]\n",
    "    qrow['k195p']=f95p[avgMode][region]\n",
    "    qrow['k1Std']=qstd[avgMode][region]\n",
    "    qrow['centers']=';'.join([str(cmSort[i]) for i in numpy.arange(3)])\n",
    "    qrow['cW']=';'.join(['{:.2f}'.format(cM[region][cmSort[i]]) for i in numpy.arange(3)])\n",
    "    db.modifyRows(mode,project,'study','ImagingDataRealization',[qrow])\n",
    "    \n",
    "    \n",
    "    fname='{}_{}_{}_histogram{}.png'.format(p,nclass,realizationId,region)\n",
    "    fp=os.path.join(locDir,p,fname)\n",
    "    x,y,w=makePlot(hM[region])\n",
    "    if state=='MIR':\n",
    "        color='tab:blue'\n",
    "    else:\n",
    "        color='tab:orange'\n",
    "    imgplot = matplotlib.pyplot.bar(x,y,width=w,color=color)\n",
    "    matplotlib.pyplot.savefig(fp)\n",
    "    rf=oDirRemote+'/'+fname\n",
    "    if not fb.entryExists(rf):\n",
    "        fb.writeFileToFile(fp,rf)  \n",
    "        \n",
    "    #print('Saved to {}'.format(oDirRemote+'/'+fname))\n",
    "    #write file to file\n",
    "    #matplotlib.pyplot.show()\n",
    "    \n",
    "    \n",
    "    jsonHistogram={'x':x.tolist(),'y':y.tolist(),'w':w.tolist()}\n",
    "    fname='{}_{}_{}_histogram{}.json'.format(p,nclass,realizationId,region)\n",
    "    fp=os.path.join(locDir,p,fname)\n",
    "    with open (fp,'w') as f:\n",
    "        json.dump(jsonHistogram,f)\n",
    "    #write to server\n",
    "    rf=oDirRemote+'/'+fname\n",
    "    if not fb.entryExists(rf):\n",
    "        fb.writeFileToFile(fp,rf)\n",
    "    #fitPar?\n",
    "    fname='{}_{}_{}_fitParFinal.txt'.format(p,nclass,realizationId)\n",
    "    fpRemote=oDirRemote+'/'+fname\n",
    "    if not fb.entryExists(fpRemote):\n",
    "        fp=os.path.join(locDir,p,fname)\n",
    "        if os.path.isfile(fp):\n",
    "            fb.writeFileToFile(fp,fpRemote)\n",
    "    \n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "nclass=30\n",
    "ds=db.selectRows(project,'study','Imaging',[])\n",
    "patients=list(set([row['PatientId'] for row in ds['rows']]))\n",
    "idFilter={'variable':'PatientId','value':patients[4],'oper':'eq'}\n",
    "ds=db.selectRows(project,'study','Imaging',[idFilter])\n",
    "rows=ds['rows']\n",
    "#rows=[ds['rows'][1]]\n",
    "rId=1\n",
    "k1Mean={}\n",
    "k1Std={}\n",
    "k1Median={}\n",
    "k190p={}\n",
    "k195p={}\n",
    "\n",
    "for r in rows:\n",
    "    pId=r['PatientId']\n",
    "    if pId.find('8')==0:\n",
    "        continue\n",
    "    state='MIR'\n",
    "    if r['SequenceNum']>1:\n",
    "        state='OBR'\n",
    "    p=r['aliasID']\n",
    "    \n",
    "    for rId in numpy.arange(1,21):\n",
    "        w,w1=getWeights(locDir,p,nclass,rId)\n",
    "        fitPar=getFitPar(locDir,p,nclass,rId)\n",
    "        fz,hM,hW,cM,cW=calculateK1(w1,fitPar,range=0.8)\n",
    "        #x,y,w = makePlot(hW[7])\n",
    "        #matplotlib.pyplot.bar(x,y,width=w)\n",
    "        #matplotlib.pyplot.text(0.3,20,'{} {}'.format(state,rId))\n",
    "        #matplotlib.pyplot.show()\n",
    "        for r in w1:\n",
    "            x,y,w = makePlot(hW[r])\n",
    "            try:\n",
    "                k1Mean\n",
    "                fy=hMy[r][state]\n",
    "                hMy[r][state]=fy+y\n",
    "            except KeyError:\n",
    "                try:\n",
    "                    hMy[r][state]=y\n",
    "                    hMx[r][state]=x\n",
    "                    hMw[r][state]=w\n",
    "                except KeyError:\n",
    "                    hMy[r]={}\n",
    "                    hMx[r]={}\n",
    "                    hMw[r]={}\n",
    "                    hMy[r][state]=y\n",
    "                    hMx[r][state]=x\n",
    "                    hMw[r][state]=w\n",
    "                    \n",
    "#generate table\n",
    "\n",
    "            \n",
    "for r in hMy:\n",
    "    ymax=-1e30\n",
    "    s={}\n",
    "    for state in hMy[r]:\n",
    "        y=hMy[r][state]\n",
    "        x=hMx[r][state]\n",
    "        s[state]=sum(x*y)/numpy.sum(y)\n",
    "        s[state]=median(x,y)\n",
    "        if max(y)>ymax:\n",
    "            ymax=max(y)\n",
    "        matplotlib.pyplot.bar(hMx[r][state],hMy[r][state],width=hMw[r][state])\n",
    "        \n",
    "    matplotlib.pyplot.text(0.5,0.8*ymax,'{} {:.2f} {:.2f} {:.2f}'.format(r, s['MIR'], s['OBR'], s['OBR']/s['MIR']))\n",
    "    matplotlib.pyplot.show()\n",
    "    \n",
    "   \n",
    "readings=getReadings(db,fb,project,locDir,'3ZF',30,'OBR',4)\n",
    "print('{}/{} {}'.format(numpy.mean(readings),numpy.median(readings),readings))\n",
    "\n",
    "patients=['2SB','3ZF','5MI','7TM','10KF','11ZM']\n",
    "states=['MIR','OBR']\n",
    "classes=[10,20,30]\n",
    "regions=numpy.arange(1,10)\n",
    "realizations=numpy.arange(1,21)\n",
    "for p in patients:\n",
    "    for s in states:\n",
    "        for c in classes:\n",
    "            for realizationId in realizations:\n",
    "                for r in regions:\n",
    "                    print('{} {} {} {}/20 {}/9'.format(p,s,c,realizationId,r))\n",
    "                    getPatient(db,fb,project,locDir,p,c,realizationId,s,r)\n",
    "                    \n",
    "#update k1 values in ImagingData from getK1 \n",
    "prows=[row for row in ds['rows'] if row['PatientId']==pId]\n",
    "    print(len(prows))\n",
    "    \n",
    "    for prow in prows:\n",
    "        idFilter={'variable':'PatientId','value':pId,'oper':'eq'}\n",
    "        nclassFilter={'variable':'nclass','value':str(nclass),'oper':'eq'}\n",
    "        dsQ=db.selectRows(project,'study','ImagingData',[idFilter,nclassFilter])\n",
    "        \n",
    "        #skip those already done\n",
    "        #if len(dsQ['rows'])>0:\n",
    "        #    continue\n",
    "\n",
    "        p=prow['aliasID']\n",
    "        visitName='MIR'\n",
    "        if prow['SequenceNum']>1:\n",
    "                visitName='OBR'\n",
    "                \n",
    "        #here the sampling happens\n",
    "        fq=[getK1(p,nclass,visitName,i) for i in numpy.arange(0,nsample)]\n",
    "        qMerge=combine(fq)\n",
    "    \n",
    "        #this is fine also if previous step is omitted\n",
    "        if len(dsQ['rows'])==0:\n",
    "            regionIds=numpy.arange(1,10)\n",
    "        else:\n",
    "            regionIds=[int(r['regionId']) for r in dsQ['rows']]\n",
    "\n",
    "        \n",
    "        for region in regionIds:\n",
    "            qrow=[r for r in dsQ['rows'] if r['regionId']==region]\n",
    "            \n",
    "            mode='update'\n",
    "            if len(qrow):\n",
    "                qrow=qrow[0]\n",
    "            else:\n",
    "                qrow={}\n",
    "                qrow['PatientId']=prow['PatientId']\n",
    "                qrow['SequenceNum']=str(nclass+0.01*region)\n",
    "                qrow['regionId']=str(region)\n",
    "                mode='insert'\n",
    "            \n",
    "            qrow['nclass']=str(nclass)\n",
    "            vars=['k1','v19']\n",
    "            avgs=['Mean','Std','Median','90p','95p']\n",
    "            for var in vars:\n",
    "                for avg in avgs:\n",
    "                    qrow[var+visitName+avg]=str(numpy.mean(qMerge[var+visitName+avg+'_'+str(region)]))\n",
    "                    qrow[var+visitName+avg+'Std']=str(numpy.std(qMerge[var+visitName+avg+'_'+str(region)]))\n",
    "            db.modifyRows(mode,project,'study','ImagingData',[qrow])\n",
    "        if i==0:\n",
    "            break\n",
    "    if i==0:"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}