{ "cells": [ { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(4.877804138352662, 0.02720420624699369, 1, array([[58.13207547, 20.86792453],\n", " [19.86792453, 7.13207547]]))\n", "Ttest_indResult(statistic=2.2558785269477974, pvalue=0.02686599410805479)\n", "(9.417431088992272, 0.009016351249902618, 2, array([[58.13207547, 19.86792453],\n", " [ 2.23584906, 0.76415094],\n", " [18.63207547, 6.36792453]]))\n", "Ttest_indResult(statistic=-8.26430309338257, pvalue=4.402977956690523e-09)\n" ] }, { "data": { "text/plain": [ "(inf, 0.013361462728551347)" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy\n", "import scipy.stats\n", "gender=numpy.array([[63,16],[15,12]])\n", "print(scipy.stats.chi2_contingency(gender))\n", "print(scipy.stats.ttest_ind_from_stats(39.48, 38.26, 79, 25.78, 22.26, 27, equal_var=False))\n", "cvar=numpy.array([[61,17],[0,3],[18,7]])\n", "cvar1=numpy.array([[61,17],[0,3]])\n", "print(scipy.stats.chi2_contingency(cvar))\n", "print(scipy.stats.ttest_ind_from_stats(1.72, 1.07, 79, 6.19, 2.74, 27, equal_var=False))\n", "scipy.stats.fisher_exact(cvar1)\n" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(5.742882730015083, 0.016555599001289927, 1, array([[48.13483146, 14.86516854],\n", " [19.86516854, 6.13483146]]))\n", "Ttest_indResult(statistic=0.507116003909028, pvalue=0.6140574223641995)\n", "(0.5543478260869565, 0.5384774958157479)\n", "\n", "\tFisher's Exact Test for Count Data\n", "\n", "data: \n", "p-value = 0.4703\n", "alternative hypothesis: two.sided\n", "\n", "\n", "(inf, 0.017701863354037183)\n", "Ttest_indResult(statistic=-7.670035520868973, pvalue=1.8453617356830517e-08)\n" ] } ], "source": [ "import numpy\n", "import scipy.stats\n", "gender=numpy.array([[53,10],[15,11]])\n", "print(scipy.stats.chi2_contingency(gender))\n", "print(scipy.stats.ttest_ind_from_stats(26.85,25.49, 63, 24.2 , 21.02 , 26, equal_var=False))\n", "cvar=numpy.array([[51,12],[23,3]])\n", "print(scipy.stats.fisher_exact(cvar))\n", "\n", "import rpy2.robjects\n", "rpy2.robjects.r['pi']\n", "dataframe=rpy2.robjects.DataFrame({'hidrokolon':rpy2.robjects.IntVector([2,3,3,4]),'operacija':rpy2.robjects.IntVector([1,0,2,0])})\n", "dataframe.rownames=rpy2.robjects.StrVector(['<12hr','12-24h','24-48h','>48h'])\n", "#print(dataframe)\n", "#import rpy2.robjects.packages\n", "#base=rpy2.robjects.packages.importr('base')\n", "#utils=rpy2.robjects.packages.importr('utils')\n", "#dir(utils)\n", "fisherTest=rpy2.robjects.r['fisher.test']\n", "res=fisherTest(dataframe)\n", "print(res)\n", "cvar1=numpy.array([[51,16],[0,3]])\n", "print(scipy.stats.fisher_exact(cvar1))\n", "print(scipy.stats.ttest_ind_from_stats(1.98,1.19 , 63, 6.23,2.72 , 26, equal_var=False))\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }