{ "cells": [ { "cell_type": "code", "execution_count": 92, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "loadLibrary\n", "remoteSourcesURL https://git0.fmf.uni-lj.si/studen/nixSuite/raw/master/remoteResources/resources.json\n", "{'labkeyInterface': {'url': 'https://git0.fmf.uni-lj.si/studen/labkeyInterface/archive/master.zip', 'branch': 'master', 'modules': []}, 'irAEMM': {'url': 'https://git0.fmf.uni-lj.si/studen/iraemm/archive/master.zip', 'branch': 'master', 'modules': ['iraemmBrowser']}, 'SlicerLabkeyExtension': {'url': 'https://git0.fmf.uni-lj.si/studen/SlicerLabkeyExtension/archive/SlicerExtensionIndex.zip', 'branch': 'SlicerExtensionIndex', 'modules': ['labkeyBrowser']}, 'limfomiPET': {'url': 'https://git0.fmf.uni-lj.si/studen/limfomiPET/archive/master.zip', 'branch': 'master', 'modules': ['imageBrowser', 'segmentationBrowser']}, 'parseConfig': {'url': 'https://git0.fmf.uni-lj.si/studen/parseConfig/archive/master.zip', 'branch': 'master', 'modules': []}, 'orthancInterface': {'url': 'https://git0.fmf.uni-lj.si/studen/orthancInterface/archive/master.zip', 'branch': 'master', 'modules': []}}\n", "{'url': 'https://git0.fmf.uni-lj.si/studen/labkeyInterface/archive/master.zip', 'branch': 'master', 'modules': []}\n", "File /home/studen/temp/labkeyInterface.zip: True\n" ] } ], "source": [ "import sys\n", "import os\n", "import SimpleITK\n", "import numpy\n", "import matplotlib.pyplot\n", "import subprocess\n", "import json\n", "import config\n", "import getData\n", "import segmentation\n", "import importlib\n", "importlib.reload(segmentation)\n", "importlib.reload(getData)\n", "importlib.reload(config)\n", "\n", "sys.path.append(os.path.join(os.path.expanduser('~'),'software','src','nixSuite','wrapper'))\n", "import nixWrapper\n", "nixWrapper.loadLibrary('labkeyInterface')\n", "import labkeyInterface\n", "import labkeyFileBrowser\n", "import labkeyDatabaseBrowser\n", "\n", "#manipulate segmentations\n", "#rewrite this\n", "#nim=getPatientNIM(pId)\n", "\n" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "loadLibrary\n", "remoteSourcesURL https://git0.fmf.uni-lj.si/studen/nixSuite/raw/master/remoteResources/resources.json\n", "{'labkeyInterface': {'url': 'https://git0.fmf.uni-lj.si/studen/labkeyInterface/archive/master.zip', 'branch': 'master', 'modules': []}, 'irAEMM': {'url': 'https://git0.fmf.uni-lj.si/studen/iraemm/archive/master.zip', 'branch': 'master', 'modules': ['iraemmBrowser']}, 'SlicerLabkeyExtension': {'url': 'https://git0.fmf.uni-lj.si/studen/SlicerLabkeyExtension/archive/SlicerExtensionIndex.zip', 'branch': 'SlicerExtensionIndex', 'modules': ['labkeyBrowser']}, 'limfomiPET': {'url': 'https://git0.fmf.uni-lj.si/studen/limfomiPET/archive/master.zip', 'branch': 'master', 'modules': ['imageBrowser', 'segmentationBrowser']}, 'parseConfig': {'url': 'https://git0.fmf.uni-lj.si/studen/parseConfig/archive/master.zip', 'branch': 'master', 'modules': []}, 'orthancInterface': {'url': 'https://git0.fmf.uni-lj.si/studen/orthancInterface/archive/master.zip', 'branch': 'master', 'modules': []}}\n", "{'url': 'https://git0.fmf.uni-lj.si/studen/labkeyInterface/archive/master.zip', 'branch': 'master', 'modules': []}\n", "File /home/studen/temp/labkeyInterface.zip: True\n", "User: andrej studen CSRF: 6e34b15b3d6eaa542a222cb14a7b39e9\n" ] } ], "source": [ "#\n", "\n", "fsetup='../template/cardiacSPECT.json'\n", "with open(fsetup,'r') as f:\n", " setup=json.load(f)\n", "\n", "db,fb=getData.connectDB(setup['network']) \n", " \n" ] }, { "cell_type": "code", "execution_count": 99, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['0', '1', '2']\n", "{'0': [[32, 31, 33], [32, 31, 29], [32, 31, 37]], '1': [[32, 31, 33], [32, 27, 33], [32, 35, 33]], '2': [[32, 31, 33], [32, 31, 29], [32, 31, 37], [32, 27, 33], [32, 35, 33]]}\n", "{'0': '0;1;2', '1': '0;2', '2': '0;2', '3': '1;2', '4': '1;2'}\n", "User: andrej studen CSRF: d292fd9b84d4b81250b57e44671b5511\n", "User: andrej studen CSRF: 174a035e610ebbfbd3995a837df4a71f\n", "User: andrej studen CSRF: 76e815114a15527d1bd7a3e9b97f7c6e\n", "User: andrej studen CSRF: 2536c635ca3638926a96a00a738f83d1\n", "User: andrej studen CSRF: ee9e2ae14f1e8250c36ce8197307b38d\n", "Done\n", "User: andrej studen CSRF: 894f2f13bd2431fb46ee00e82a72aba1\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABlAAAAOJCAYAAABifW+UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCu0lEQVR4nOz9f7RfdX0n+r8+55yckwBJGAQSooFCkaD8iCNIlr1adcgIzB0qlplRp8uipfbWentH8cfUWaPI1JaqvZarMnrv/S5L7Z1SnM7CO7dTUcnwQ0eLV1tabe9YwXQMhUQIknMSkvPrs79/OIlkQ85+HfI+n70/OY/HWmctyHnnvV+fvd/P/d77885nf3pVVVUBAAAAAADAISNtFwAAAAAAANA1FlAAAAAAAABqLKAAAAAAAADUWEABAAAAAACosYACAAAAAABQYwEFAAAAAACgxgIKAAAAAABAjQUUAAAAAACAmrG2C1hq/X4/Hn744Vi9enX0er22y4ElV1VVTE1NxYYNG2JkpDtrpLLIciOL0A1dzKIcstx0MYcRssjyI4vQDbII3ZDN4jG/gPLwww/Hxo0b2y4DBm7Hjh3xvOc9r+0yDpFFlitZhG7oUhblkOWqSzmMkEWWL1mEbpBF6IamLA7FAsrNN98cH/nIR2Lnzp2xefPm+PjHPx6XXHJJ6u+uXr06In60I9asWbOUZR5SVVWqXb/fL9Imu82SdWX7Kqmrq9+ZukrW3rTvp6am4uyzzz409ktazlmcn58vts2SuS4p+y9fSo7nTF/Z/VByf5Xoa2pqKp7//OfLYuTHfFfnxZLn+UH3VVJXz6lNpqam4pxzzulUFkvnsGR2su0yujreB33tVlLJ45jNYYkxsZQ5jFj6LGbPRZl9WjJjWZlrvDbmsVLbK63kNUSmXcksNvU1NTUVmzZt6tScGPHjLP63//bfimRxmN/TyI75krnO6Oq82Mb16dzc3FH3NTU1FS94wQtksSVdvb8rtb02lLxWmp2dTfU1MzPT2KZpDE5NTcUFF1zQmMXOL6Dcdtttcd1118WnPvWp2LJlS9x0001x2WWXxXe+85049dRTG//+wYG1Zs2aoXzT1gLKj3X1JNG1BZSl2GaELFpA+TELKIsjixZQ2uyrpK6eU7O6lMXSObSAsjgWUH5kkAsoBy3Ffh1EFi2gLK7dsL9RdCwvoBzUpTnxqfWUyuIwv6dhAWVxhnUB5SBZbEdX7+9Kba8Nw7qAclDTfu3Og/aO4KMf/Wi85S1viTe/+c3xwhe+MD71qU/FcccdF5/+9KfbLg2WFVmEbpBF6AZZhG6QRWifHEI3yCIsjU4voMzMzMQ3v/nN2Lp166E/GxkZia1bt8bXvva1Z/w709PTMTk5edgPcHRkEbpBFqEbFptFOYSlIYvQPten0A2yCEun0wsojz32WMzPz8e6desO+/N169bFzp07n/Hv3HjjjbF27dpDP778CI6eLEI3yCJ0w2KzKIewNGQR2uf6FLpBFmHpdHoB5dl473vfG3v27Dn0s2PHjrZLgmVJFqEbZBHaJ4fQDbII3SCL0A2yCDmd/hL5k08+OUZHR2PXrl2H/fmuXbti/fr1z/h3JiYmYmJiYhDlwbIhi9ANsgjdsNgsyiEsDVmE9rk+hW6QRVg6nV5AGR8fj4suuii2bdsWV111VURE9Pv92LZtW/zP//P/3EpNVVUVaZNt1+/3U31l2mXryvSVrSuzzZGR3AehRkdHi2wv2y7bV6/XS7XLyO6LhWSPzWIc61ksOebn5+cb27QxTkuMrYMyWczmouR5MLPvs31l6m9qk6lnsWQxv19Lngsz46HkXJbNT8n5J6ON41giR7Ozs0fdR10Xs9ikjXmsZHYy7bJ9lTjHL4XMfi1ZV3ZMzM3NNbZpqn0pchhRLotVVS34Grp6f1fyeqtkFrs6j2WVrKvkdVImi01thn1OLJmfkteKJe+12shFV7NYUuY1lsxiU9a6nsWmebGr92Tmn2NDF+fFTi+gRERcd911cc0118TFF18cl1xySdx0002xb9++ePOb39x2abCsyCJ0gyxCN8gidIMsQvvkELpBFmFpdH4B5XWve108+uij8f73vz927twZL3rRi+KOO+542pciAUtLFqEbZBG6QRahG2QR2ieH0A2yCEujV2U/FzOkJicnY+3atbFnz55Ys2bNUfc3zI8q8QivxbUb1kd4TU5OxmmnnVZszJfS5SxmclbycTNdfYRXG48gOpYf4TU5ORnPfe5zZTHKHsOufly8ZH5KPoaopJKP+8m0iSjzCK/Jyck4/fTTO5XF0jnMHJuS+3zYH+FV8hFEJQ362ib7yIISj/DqYg4jfpzFJ554YsG62rimLPkIr0Hnp6vzWEkl762z5+dMZpv6mpycjDPOOKOzWfzhD3+4YF0l89PGI7wGPS8O++OMMkreW2fnxenp6aPua2pqKs4888zOZvHxxx8fWBazSj7Ca9D5kcUfy4ydmZmZVF/79+9vbNM0L05NTcXzn//8xiyWe1AjAAAAAADAMcICCgAAAAAAQI0FFAAAAAAAgBoLKAAAAAAAADUWUAAAAAAAAGosoAAAAAAAANSMtV1AV1RVNfC+Mu1K9jU/P5/qq9/vF+srU9fo6GixvrIy9Zfc971eL9XXyEjzmmZTm7m5udS2WJzseBh0frIyda1YsaLY9rIyrzFTe0TE7Oxssb4ydTVlcWZmJrUtFid7DDM5y/aVnacyMuf5rOzckjHo66DsebBErmXxR0qOl2x2SvY1NtZ821LyNbahZP0l+8rktSmrw57DkufIkkpe12QNe85Kye6HQZ97p6enF/x917PY7/cXfJ0l79GzSt6vDPo8vxzymn2Ng763bspi0+/b1pTF7Jgvec2YOdbZe61MXdm+lkPOShr0uavpPdLse6g+gQIAAAAAAFBjAQUAAAAAAKDGAgoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUWEABAAAAAACoGWu7gEGpqiqqqirST4k2i2mX0e/3G9vMz88X66vka8zWlekrU3t2m9nXmN1mxshI85rm2NjCsZ2bmytVDs9CZjxkx0xmDPZ6vVRfmXZtnLtKnlMz+3VmZibVVwmD3FabMmMrO05LbS+ibBYz28ycv7ts0Mcxu+8zOWqa06enp1PbGmYlj1/J45y53spuL5Ox0dHRVF/DrORxzPaVOY5NOet6DkvdK5ZU8t6n5PVWyTmx5Pmmq0rur8zxnp2dParft60piyXvV0r2VfKaMmvYrz0HreS8mBkTw57Ffr+/4Lge9vcOMvlZDnNUSSWvUUteRzSdn7Pnb2dcAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUGMBBQAAAAAAoMYCCgAAAAAAQI0FFAAAAAAAgJqxtgsYlKqqoqqqBX8/aJlt9vv9VF/z8/PF+hr0vsjWlWmXrX3QfWVfY6/XO+q+ZmZmUttqS1MWF9NPiTal+yq1vazMmFlMu4w26i/VV7b2zDm1ydzc3FH3sZRKZTG7rS72xdIomevM/Dk7O3tUv29Tv99PXyMsZNBzYslrt+x4KXntlmlXchy3QQ4XpymLXb3HyF6vlDxHjIw0/xvM0dHRVF/LIYuD1nT92fXr06YslnxPo6v3+yXnxUxeF7PNY13J/dV0fEpc/y2lLt4rDvo+sOR7Ldl5cTnI7K9sFjP7tamv7LZ8AgUAAAAAAKDGAgoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUWEABAAAAAACosYACAAAAAABQM9Z2AYPS7/ej3+8fdT9VVRVpExGperI1l+wro9frpdpl9sX8/Hyxvtow6DHR1Nfc3FxqW21pymLJsdVGfgY9TkuOrey+z7QbGSm3Pl+yrpLjq6lNyXPuUpDF7s7X2fxk6s8ex4w2spjRtB+6ev0QUe76NNNH9norcx2R7SvTruS4Gh0dTfWVyVh23JQcy4OWrb3E/upyDiOas1jyHN9GFjN1ZfNT8jpwxYoVRbbXZSXnxEy7Yc9iVVUL1ljyOrCNvgatq9dubSj5GsfGmt9KbTqnZs+5bWnKYslzScl7sjaUHFuZ+XM5ZLHkdURTm0wfET6BAgAAAAAA8DSdXkD5wAc+EL1e77Cfc889t+2yYNmRRegGWYRukEXoBlmEbpBFaJ8cwtLp/CO8zjvvvLjzzjsP/X/mo3JAebII3SCL0A2yCN0gi9ANsgjtk0NYGp1P0tjYWKxfv77tMmDZk0XoBlmEbpBF6AZZhG6QRWifHMLS6PQjvCIivvvd78aGDRvirLPOip/7uZ+L73//+wu2n56ejsnJycN+gKMni9ANsgjdsJgsyiEsHVmEbpBFaJ97RVganV5A2bJlS9xyyy1xxx13xCc/+cnYvn17vPzlL4+pqakj/p0bb7wx1q5de+hn48aNA6wYjk2yCN0gi9ANi82iHMLSkEXoBlmE9rlXhKXTq6qqaruIrCeeeCLOOOOM+OhHPxrXXnvtM7aZnp6O6enpQ/8/OTkZGzdujN27d8eaNWuOuobM7sru0vn5+SJtIiJmZ2eL9ZXR6/VS7fr9fmObbF1dHaqZ+jP7ISL3GkdGFl73nJqaivPOOy/27NlTZMw/k6PJ4uOPP75gXdmxldlX2f2eOYZzc3OpvjLt2shipt3o6Giqr0y7pnG6GNnjODMz09jmwIEDqb4y59SmMTg1NRUXXHCBLEbZLGaOTUQui9m6MuM5+3zhFStWFOsrU1f2OGZk5+HMMdq/f3+qr7179za2eer4fiZTU1Px9//+3281i0t9fVryeiuTneycmNlmdoxmcjExMZHqK5PD7DxWMmMlZcZEZt6MyOVwz549C/5+EDmMePZZfPTRRxesKztfDDqL2b4ydWWvAzP5aSOLwyx7Tt23b19jm8cff3zB309NTcXmzZs7m8Vdu3YtWFfJ9w5K3qNn+8rIZjEzL2Yylu2rq/NdSdnxlbmOzWTx/PPP7+y94s6dOxesK3tfUDI/JXOWmVtKZjHb16Dv77oqm8Wm+8CI5uvYqampOPvssxuz2PnvQHmqE088Mc4555x44IEHjthmYmIifcEGPDuyCN0gi9ANTVmUQxgMWYRukEVon3tFKGeo/jnH3r1748EHH4zTTjut7VJgWZNF6AZZhG6QRegGWYRukEVonxxCOZ3+BMq73vWuuPLKK+OMM86Ihx9+OK6//voYHR2NN7zhDYvuq9/vF/2410KyHzUq+Qivkh8XL6nko5EyrzH7Ee+SH4vLtCv5KJymNkvxqLOSWZyfn19wXJT8OGLJxwa18eiGkuesEo+HO6jkx8Uzx7vkmM6Or8y+aDo+S/HR2i5mMXN82pgXS/aV2RclHwORHfMlPy6eUfKcVDKLTX11OYtNOVxMP01KPoqyZF8lx3u2r8yYyD5Kr2TGBq3ktW5TVpfqMUylsth0r9jVeSz7WMtMXyWzWPIRmSXHaVeVnBObjk/23LZYg8piyXuyNh7hlWmXzXXJLJZ83LMs/kjTpzqyj9FcjJL3ilVVLTj2s3NGZgyWfBxYVx8tVvJxesP+mNmMklkcHx9f8PfpY5Nq1ZKHHnoo3vCGN8Tu3bvjlFNOiZe97GXxp3/6p3HKKae0XRosK7II3SCL0A2yCN0gi9ANsgjtk0NYOp1eQPnDP/zDtksAQhahK2QRukEWoRtkEbpBFqF9cghLZ6i+AwUAAAAAAGAQLKAAAAAAAADUWEABAAAAAACosYACAAAAAABQYwEFAAAAAACgxgIKAAAAAABAzVjbBQzK/Px8zM/PH/H3IyPl1pKqqkq1W6iexbTJtuv3+6m+Mu2ydc3OzhZpExExNzfX2GZ0dDTV19hY89DP9pVpV7KvJiXH8lIYZBbbGPPDnJ9er5fqK5Of8fHxVF+ZMZ+tKyN7fs5ss2msDnsWs/s9s0+zYz4zTkvOiyXzk5XJz3HHHZfqa2JiorFNdl7JHO/sOTWzv7L7NDO+mmoveQ4prd/vL7hfS15TZvd5pl12LGTqmpmZSfWV2ebKlStTfWX2azaHmfHVxjyW2V/Z45gx7HNiUxZLjvmS15QlzxHT09PF+srmOuOEE05ItRv0NWVW5hiVvD5dsWLFUf2+bYPMYna/Z9qVvEbKniP279/f2CZzrZi1atWqVLvM+b6rWczKvMamrGXuCdpUVdWC+6yN/Ay6r5Ln5ux1eCaz2fdalkMWB/m+TbevZAEAAAAAAFpgAQUAAAAAAKDGAgoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUWEABAAAAAACosYACAAAAAABQM9Z2AYMyPz8f8/PzR91Pr9drbNPv91N9Zdpl+6qqqlhf09PTjW1mZmZSfWXaZfuanZ1tbJM5PhERK1asaGwzPj6e6mvlypWNbSYmJlJ9jY0dfSRHRrq9LjqsWSwpu70DBw40ttm3b1+qr0zOsmNndHS0sU12LGe2mdledpuZ7Ge3mT3fdFVTFkueS0rOZdn9XvL4ZPKzf//+VF+ZsTU3N5fq67jjjmtsU2JeOSh77s7Un+2rxHyxHGSyk2kTkctOyfkiK3N9mmkTkTsnZV9jyf1V8tomk8PMtXVELodNr7Hr16ddlNln2XN8yWvdzPVp9v4uM+az126Ze7I2xmHJe/6MpvNuyfPysMvOiyVlxnz22ieTs+y8WPIavKtZLPmeWcawz4tVVbWSkYWUvN4teW7OZDY7L2b6ytaVeU8zOydk8p/d9yWzWOI4ZrfV7cQCAAAAAAC0wAIKAAAAAABAjQUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUDPWdgGDMj8/H/Pz80f8fa/XS/WTaVdVVaqvbLuMkZFya2EL7aeDnnzyyVRf09PTjW1mZ2dTfWXbZUxMTDS26ff7xbY3Ojqaapc5jk1jsOS4Wgr9fr/Ivs1kMbudzD7LniMyxzrbVyaL+/btS/U1NzfX2GZsLDcllBinS2F8fLyxzXHHHZfqa9WqVY1tmo5117NYVdWCNWbG38F+mrSRxRUrVjS2KfkaDxw4kOorc47I1B6Ry2L2+iBzjsjOwyXnz8x5qeQ10KD1er0Fx3TJa8psdkqOq8x4z46XzPjL5jBzfZrtKzNGs9eBmeOYPW+VzHRmm03jq43rgsVoymLJe8VsfjJ9ZeeLzDjNnm9mZmYa22QyFpHL2f79+1N9lcxiyfuMTLtMXiPy+R9mIyMjC2YkO04z+71kFrNjq2QWM+MmO5dl3t8peX2a7aukzJjI5jqz75vyWvJ6eSmUukYtOS+W2t5i2mVkzs2ZuTOizNg6KHOMslksub9KZrHE/UH2mmV47zgBAAAAAACWiAUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAULPoBZS77rrriL/73//3//2oigHy/st/+S9tlwBExFe/+tW2SwAi4mtf+1rbJQCx8Lz46U9/eoCVwPL2la985Yi/k0UYjC9/+cttlwAUsOgFlMsvvzze/e53x+zs7KE/e+yxx+LKK6+MX/u1XytaHHBkb3zjG+PXf/3XD8vi448/Hm9961tbrAqWn5//+Z+P3/iN33haFn/lV36lxapg+Xnzm98cN95449Oy+Ku/+qstVgXLzxvf+Mb44Ac/eFgWf/jDH0ZExAc+8IGWqoLl5/Wvf3184AMfeNq8GCGLMCive93r4vrrrz8sh7t3745rr722xaqAxRpb7F+466674ud//ufjS1/6UvzBH/xBbN++Pa699trYtGlT3H///UtQYhlVVUVVVUf8/fz8fKqfXq/X2Cbb10L1LGZ72XZjY4s+3Ec0NzeXanfgwIHGNv1+P9VXpt3ISLmn0mVf4/T0dGOb7L5fzHH8wz/8w3jHO94RX/7yl+NjH/tY7NixI97znvfEGWeckdpWV5XMT3ZsZWTHVuYYjo6OFusrsx8icvt1YmIi1VdmPJes66kXm0fbLntOzbzGg2Pi1ltvjeuuuy6+/OUvx//2v/1vsWPHjviX//Jfdj6L/X5/wYxk85M5htm+MjkreT4tmcXs2Mrsi2x+Mu1KzmX79+9P9ZXJ4ooVK1J9rVq1qrHNwXPXH/zBH8Q73/nO+MpXvjI0WSx1fZoZV9kcZnKRzU6mXXa8z8zMNLbJjveS1xCZbZa81i05J2bHV8ZTz4Gf/exn41/8i38RX/7yl+MTn/hE7NixI975zndGxML/Ir5NIyMjC85BJa8ps/PFoLOYlRk3g95eRG7MZ883GSXPEdnXmGn31DZ/9Ed/FP/L//K/xD333BM333xz7NixI97xjndExPBmMXsMM9eU2b4y4zl7r1jyPaCS15SZvjLzcETZe8VB3w+XvP85uL/+/b//9/Ev/sW/iLvuuiv+7b/9t/H9738/3vnOd8ZP/MRPpLbVll6vlx6Lg1LyPc2S91GZcZPtK5OzkveKK1euTPVV8r3WTH6y+ysz9ze9L529x130Hvipn/qpuP/+++P888+PF7/4xfHa17423vGOd8Tdd9/d6RtUONZcfPHFcccdd8SmTZvif/wf/8f4pV/6pbj22mvjlltuabs0WFYuvvji+PznPx/nnHNO/ON//I/jf/qf/qe49tpr43d/93fbLg2WlYsuuij+03/6T4ey+Mu//Mtx7bXXekwJDNjFF18cX/ziF2PTpk1xxRVXxC/+4i/Gz//8z0dExOmnn95ydbB8vOQlL4k777wzNm3aFJdddln8wi/8QrzpTW+KCFmEQXnJS14SX/rSl+Lcc8+Nyy67LK699tp4y1veEr//+7/fdmnAIjyrJaS/+Zu/iW984xvxvOc9L8bGxuI73/lOPPnkk4vu5957740rr7wyNmzYEL1eLz73uc8d9vuqquL9739/nHbaabFq1arYunVrfPe73302JcMx6Xvf+1785V/+Zaxfvz5GR0fje9/7Xnr19KlkEY7O9773vfjWt751KIsPPvigLEILtm/fHt/61rfitNNOMy9Ci+rXqH/7t3+76D7kEI7egw8+GH/xF39xaF7cvn37ovuQRTg69Ry6V4Ths+gFlN/6rd+Kl770pfEP/+E/jG9/+9vx9a9/Pf78z/88LrzwwkV/eee+ffti8+bNcfPNNz/j7z/84Q/Hxz72sfjUpz4V9913Xxx//PFx2WWXpR4LBce6m2++OV772tfGy1/+8vjSl74U/8//8//EX/3VX8XP/uzPLrovWYRn79/+238bP/uzPxsve9nL4otf/GL8x//4H2URWvDJT34yrr766njZy14WX/jCF+Jzn/tc/NVf/VX8k3/yTxbdlyzCs/eJT3wiXvOa18TLX/7y2LZtW/zxH/9x/H//3/8XERFf//rX0/3IIRydj3/843HllVfGK17xirjrrrvi85//fPz1X/91RMgiDMrHP/7x+Jmf+Zn46Z/+6fjP//k/x5/8yZ/Et7/97fiZn/mZRfcli9CeXrXIB4Gedtpp8elPfzquuOKKQ382Ozsb/+pf/av42Mc+lnqG9jMW0uvF7bffHldddVVE/GjldMOGDfHOd74z3vWud0VExJ49e2LdunVxyy23xOtf//pUv5OTk7F27dr4b//tv8WaNWuO2K7k9xuUfIZpSdlnyE1OTja2OfhFkE327dvX2KaN70DJfNdD9tm9mee4H3/88am+Ms8fPPjcx4suuih++7d/O171qlcd+t3s7Gx88IMfjN/93d+NPXv2LDjmj2Sps7hjx44F6yr5PMc2vgMlI3uezOTs0UcfTfWVeZbmcccdl+qrq9+BknHCCSek2q1evbqxzcHzyMUXXxwf+chHnjGLt9xyS2ez+P3vf3/BupbDd6Bks/jEE08UaZOVHS+Z7wfJZvFY+A6USy65JD784Q/HK1/5ysNq+Y3f+I34vd/7vU5l8WAOd+7cuWBN2Wu3ks/YL/m9CxnZZ6pnrk+zn4jPjL/sWMnMndlriGPlO1Be/OIXx2//9m/HP/gH/+DQnz3++ONx4YUXxvj4+LO6X1zqOfEHP/hBkSyW/B6OklnMbLNkFrPzRab+tWvXpvrK3G+VfH5+V78D5anb27x5c3z0ox+NSy+99NCfPf7443Heeed1Nou7du1aMIvZfZXZ7139DpTseT7zXsuz+ZTDkWTf08jMi+Pj46m+hvk7UA7m60UvelF89KMfPWxOnJ2djRtuuCE+/elPd+r6NOLHWXzkkUcG9r5Nye/EyRr0d0lmz7cl76My7y/6DpSIqamp2Lx5c2MWF70HvvWtbx22eBLxo4P3kY98JL74xS8utrsj2r59e+zcuTO2bt166M/Wrl0bW7ZsWfCTLtPT0zE5OXnYDxyLvvSlLx32hm3Ej7J4cLIsRRZhYV/84hdlETrgjjvuOGzxJOJHWTz45dWlPJssyiHLyZ133nnYG0URP77Zv/3224tsw5wIzf7zf/7Phy2eRMgiDNq2bduecU78l//yXxbdjizC0lr0AsrJJ598xN+94hWvOKpinmrnzp0REbFu3brD/nzdunWHfvdMbrzxxli7du2hn40bNxarCbrkpJNOGsh2ZBEWJovQDV3OohyynCyUxZe97GVFtmFOhGbPec5zjvg7WYTBWCiHJckiLK1yn8HpiPe+972xZ8+eQz87duxouyRYlmQRukEWoX1yCN0gi9ANsgjdIIuQ09kFlPXr10dExK5duw778127dh363TOZmJiINWvWHPYDPHuyCN0gi9ANzyaLcghlmROhG2QRukEWYWmV+xa1ws4888xYv359bNu2LV70ohdFxI++zOi+++6Lt771rYvur9frFfnCoZJfgJRtl5H5Qp/sl/6U/JK0zD4v+WXt2boyXyCY/QKxzJcWZb8wKlNX0/4qOa4iBp/Fkl/cVvLLUUt+cXX2XJTJRrauzLg4+EXMTTJfNFYyP9njmPny02wWM19s2HROyu6DrNJZbJLd75l9mj0vlTgHHlQyi5m5peSXamdznWmX3feZLGa/zK/pi/oi8uMr8xqb8tr1eXEhJY9ftq+S15QZ2exkzsvZMVqy/pLn+kz9mXwtpl1GieuRrs+Jg7xX7Orckz1HrFq1aqDbLPkF0dl9X/KLvjPXp9k5scR8VvL+KKK7WRzm68CsTBbb+IL1zFyW3feZdtm5P9Ou5HsRTeeI7H1p1qCzWPJ9z5JZzF7jlawrM26y596SX7CemX9K3h+UPEdk91eJL5F/8sknU9tqdQFl79698cADDxz6/+3bt8f9998fJ510Upx++unx9re/PT74wQ/G85///DjzzDPjfe97X2zYsCGuuuqq9oqGY5AsQjfIInSDLEL75BC6QRahG2QR2tPqAso3vvGNeNWrXnXo/6+77rqIiLjmmmvilltuife85z2xb9+++KVf+qV44okn4mUve1nccccdqX/9DOTJInSDLEI3yCK0Tw6hG2QRukEWoT29qvRzDTpmcnIy1q5dG9///vcXfJZfiY+JHlTyo1lZmY9TZbc3NTXV2Obxxx9P9bV3795Uu4ySH9cr+QivzNjJftT9+OOPb2zT9JilqampOP/882PPnj2den7lwSw+9NBDC9ZVMj9dfYRX9iP/e/bsaWzz2GOPpfrKbPOEE05I9TXoR3jt27cv1VfmI6rZLK5evbqxTdP+mpqaigsvvLCzWWyaF7PjdNCP8Mo+ai4zH2TGTEQui5k2WWvXrk21K/nohv379ze2yb7GTF+Zx3JG5M5LTXPn1NRUbN68uVNZPJjDnTt3Fslh5nFN2bGQOTaZx2llZV9jZi7IfgQ/c37IXJNF5ObE7PVp5pEGmXxFdO8RXlNTU3Heeed1KocRP87io48+WiSLmXkle9+ZmROz16cZ2deYyVl2nGbOS9lrt0y7ko++HdZHeE1NTcULXvCCzmbxBz/4wYJ1ZR9dU/I+MHMOLPkIr+xrzFyDZ+fFzP7K5iczL2avA4/lR3h1/V6x6Ro1u68y7br6CK+Sj7TOXpeVvLcu8Vjyg47lR3jt3bs3XvrSlzZmsbNfIg8AAAAAANAWCygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUWEABAAAAAACosYACAAAAAABQM9Z2AYMyMjISIyNHXi9a6HdPVVVVkTYREf1+v1hfGb1eL9VufHy8sc3KlSuPtpxDMvshK/saM/t1bm7uaMs5ZH5+PtWu5PHuqtHR0RgdHR3ItrJjK9Muewwz55LscR4baz5FH3/88am+Mq8xm+uJiYlUu4wDBw40tpmdnU31lclsySw2tel6npuymM1PZsxnz6eZbWbrys4HGZksZnOROf9ltpdtV/J8k71WyhyjmZmZYn0Ncxabrk+z47hkDkvK1J+9JsiM0Wx2Sp4fMrJjMDNHZefEzPyaPZ+uWrWqsU3TcexyDiN+NCYWGhcls9jGviiZxcy9Ysl5v2R+ssex5Dw2PT3d2Ca7vzLjq6lN9lq4LaWyWPI8n9nvJevKzmWZY7lixYpUX5m6SuYnO+Yz+S95r1jy/YOm7bVxXbYYg5wXs0qO05LniEzO2rgfzuQnOyeUfK+lZF+ZdqWyuGwWUAAAgOVhvl/Ft3Y+GbufnIvnHDcWF6w/LkZHBrtwcqS6/mzHZDy2byZOPn48XrxxTWfq+utHp+Px/fNx0qrReOEpE52oCwAA2mYBBQAAOGbcu30ybv7qrnh034//Rdkpx4/F235qXfz0mWtaq2vbd3bHh+/8Xuya+vG/XF+3ejzes/WsuHTTc1qr66s7noz/85tPxO4nf/yv+J5z3Gi85aIT46c2HtdaXQAA0AW+AwUAADgm3Lt9Mj7wpb87bPEkIuLRfXPxgS/9Xdy7fbKVurZ9Z3e86/b/etjiSUTED6Zm4l23/9fY9p3drdT11R1Pxm99efdhiycREbufnI/f+vLu+OqOJ1upCwAAusICCgAAMPTm+1Xc/NVdC7a5+au7Yr4/2O+gmO9X8eE7vxfPtNWDf/bhO7/XSl3/5zefWLDN/++bTwy8LgAA6BILKAAAwND71s4nn/bJk7pH983Ft3YO9lMVf7Zj8mmfPHmqKiJ2Tc3E/X83NbiiIuKvH51+2idP6h57cj6+vWv/gCoCAIDusYACAAAMvd1PLrx4sth2pTy278iLJ4e3m13iSg73+P6FF08OGvT+AgCALrGAAgAADL3nHDdWtF0pJx8/nmy3YokrOdxJq0ZT7Qa9vwAAoEssoAAAAEPvgvXHxSnHL/xm/ynHj8UF648bUEU/8uKNa2Ld6vHoHeH3vYhYt3o8XvTc1YMsK154ykQ857iFF1FOPm40zl+3akAVAQBA9yybf040MjISIyNHXi9a6HdLpaqav5Ax0yZrdDT3r8xWrGj+12+rV+du8DJ9zc7mHlfQ7/cb28zP5x5FMDfX/CiC7P7q9Y50O/xjY2O5qGX6Gnalsphpl92f2TGYkclstq7x8eZ/sbpmzZpUX5n8ZMd8Zt9ntpfdZjY/mf2VfY0ZTce65Pl7KYyNjS24b7NZzIznbMZK7rPMGCyZxRNOOCHVV6ntRZSdMzLHOzOnZ9uVrL2pry7Prb1eb8H6svs8k52S1zVZmb6y55rMvjj+uFXxjldsjH/1J9uP2OYdr9gYKyeaM5atK7PvR3q9ePelZ8a7P/ed6EUc9mXyB/fQuy89M0ZHyu371JgY6cVbLjoxfuvLu4/Y5hcvOjF6UUW/4YvkhzmHEc1ZzOan5P1dyWvdklnMXJdl57GS1+Al7xVL9pVpl71uzmg61l2/Pi2VxZIy+Rn2LJY8d2XGfLavTDYy7+0spl1Gpq5hv1dsymLJ66SsQWcxK3Neyl7Tl5x/Mvs+O/9ktllyji2p1DWqT6AAAADHhFeefWL85j86M0494fAb1VNPWBG/+Y/OjFeefWIrdV266Tnxkas2xamrD38z69TV4/GRqzbFpZue00pdP7XxuPi1lz/naZ9EOfm40fi1lz8nfmrjYD+tAwAAXbNsPoECAAAc+1559onx8rPWxl88vDce2zcbJx+/IjZvOKHoJzyejUs3PSde+fyT4s8fmoxH987EKSeMx99/3prW6/qpjcfFlueuir9+dDoe3z8fJ60ajReeMtF6XQAA0AUWUAAAgGPK6EgvXvy8wX6nSMboSC8uPn1t22U8zehILy5Yt7LtMgAAoHM8wgsAAAAAAKDGAgoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUjLVdwKBUVRVVVR11P71er7HNyEhuXWp0dLSxTb/fT/WVqStrfHy82PYyr3FmZibVV6Zdtq/Mfh0by8VjxYoVjW1WrlxZrK9h1+v1iozXzPHJbifTbn5+PtVXifPMQZnxkMlYRP5cMui+MrJZXLVqVWOb7P6amJhItRtmIyMjC85X2fxk9lX2GGbGVnb8ZbKYfY2Z+rNzf6aubF8lZfZFdo467rjjimwvIje+mvoqeY1UWtOcWPKclZ3HSsrs+5I5zM7BmX2RravkvF/yvJW5ns/Wnsl+03mrjfNaSdksZo5PyTFTcr+WvIfNzheZfZHdX5nrg5J9lbxPz46vzDEa5jkxIztOS2ax5FxWsq/MuMleg2fmxbm5uVRfmWxkr0kGncWszDhs47qrpFLv2wz6nFMyiyXnxWwWMzkreT+c7avkHFvyPJhR6hp1uK9kAQAAAAAAloAFFAAAAAAAgBoLKAAAAAAAADUWUAAAAAAAAGosoAAAAAAAANRYQAEAAAAAAKixgAIAAAAAAFBjAQUAAAAAAKBmrO0CBqWqqqiq6oi/7/f7qX56vV6pkmJkpHn9quT2sjLbLFlXG68xs++zxsfHG9usXLky1dfo6Ghjm6ax2sb+XIymLA46YxG5/Z6tK3Muyda10H5aTJuIXF3z8/OpvkptLyK37ycmJo62nEPGxnLTXqaupn3f9Sw2yY7TTLtsX5lxkx1bmfGcPUaZdtm6Sua61PYicq8xm59Vq1Y1tslkLLvNpvFVcs4ftOwYzezPNuaeTLuSr7HkeC+Zw5Lnh+xxzFyfDvI6qetzYqnr02E+32RlxkN2vsiM+bm5uVRfJa8hsu0ySt5nlLAcxmjE4F9nyWOYnX8yr7Hk9Vb2XjFTf7avklksec+Sqb+pr+UyL5Y06G2WnPvbyGKmXclr1JL31iWPddO+zx6b5TF7AgAAAAAALEKrCyj33ntvXHnllbFhw4bo9Xrxuc997rDfv+lNb4per3fYz+WXX95OsXAMk0XoBlmEbpBFaJ8cQjfIInSDLEJ7Wl1A2bdvX2zevDluvvnmI7a5/PLL45FHHjn0c+uttw6wQlgeZBG6QRahG2QR2ieH0A2yCN0gi9CeVr8D5YorrogrrrhiwTYTExOxfv36AVUEy5MsQjfIInSDLEL75BC6QRahG2QR2tP570C5++6749RTT41NmzbFW9/61ti9e/eC7aenp2NycvKwH+DoySJ0gyxCNywmi3IIS8OcCN0gi9ANsghLo9MLKJdffnl85jOfiW3btsWHPvShuOeee+KKK66I+fn5I/6dG2+8MdauXXvoZ+PGjQOsGI5NsgjdIIvQDYvNohxCeeZE6AZZhG6QRVg6vaqqqraLiIjo9Xpx++23x1VXXXXENt/73vfiJ3/yJ+POO++MSy+99BnbTE9Px/T09KH/n5ycjI0bN8ZDDz0Ua9asOWLfIyO5taRer5dql5HZ9W0cnsw2FzoBP9XMzExjm9nZ2VRfTz2uR7O9iIi5ublUu4zx8fHGNitXrkz1NTo62tim3+8v+Pupqak477zzYs+ePQuO+SNZ6izu2rVrwboGnbGI3Hhu2u+LaZetq+Q5IlNXNteZdtmMZfJfMq9jY7knV2ay2LTvp6amYvPmzZ3N4qOPPjqwLJbMT7avQec629eg5/5sXZksZubhiNy+z2QsIpfZpmu4qampOP/881vN4pFy+Nhjj3VuTiw5RjPtSuYwO19kxmj2NWaOUbavTP3Za93Ma8ze/2Tymsnhueee29k5cZBZ7KqS15TZ+7uS14Elr8EHPe8PcnxNTU3FC1/4wqHN4mLqHKQ25uuSWczMLdnrwExms/ed2ZxlZOa87LxY4n54amoqXvziF3c2iz/4wQ86Ny+W3Oag73VLvu+ZzWJmm21kMbPvs8cnU3/T+W3v3r2xZcuWxix2+hModWeddVacfPLJ8cADDxyxzcTERKxZs+awH6AsWYRukEXohqYsyiEsPXMidIMsQjfIIpQzVAsoDz30UOzevTtOO+20tkuBZU0WoRtkEbpBFqF9cgjdIIvQDbII5eSeZbJE9u7de9hK6Pbt2+P++++Pk046KU466aS44YYb4uqrr47169fHgw8+GO95z3vi7LPPjssuu2zR26qqasGPQmY/jpT9SF8p2Y8tDfrjZ9lHb6xYseJoy1mUbF3Zj6llZF5jdj9kjmNT7dl98FRdymIbMrkumcWSH8vu2r5crMz+yo7pTF/ZR3hl+mr6WHbXszhIJR+T2cbHxTM5y77GQT8eKbu/MvVn57JMu5K5btoPz+babdiyWDI7g358ZMn5tas5LDlXZ7OTaSeHh9e/0Gto456sq0pmscQjUxfTrmQWS86vJd9jaDrvLpcsZnQ1ryXHVslHppZ81E/2/beS1zeZfTHI99W6nsV+v7/ga2jj/q6r+R90FrOPtiz5KPSSx7Hk+28ZTfs+fWxKFPNsfeMb34hXvepVh/7/uuuui4iIa665Jj75yU/GX/7lX8bv/d7vxRNPPBEbNmyIV7/61fHrv/7rMTEx0VbJcEySRegGWYRukEVonxxCN8gidIMsQntaXUB55StfueC/LvjCF74wwGpg+ZJF6AZZhG6QRWifHEI3yCJ0gyxCe4bqO1AAAAAAAAAGwQIKAAAAAABAjQUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1Iy1XcCgVFUVVVUd8fe9Xi/dT5NsX9l2pWRqL210dLRYXyMjzet92e31+/2jLWdR2xwbKxe1puOY2U9taspiVsn8DLqv7OsvWVdmXJQ8d2XHYaZdyfyUPCc1HceS21oKw5rF7PYyYys7Fwx6vi55TZKVGa+DPidltzk/P19kW20Y1hyW7GvQ+Yooe37IKDm/lpxbsn1l9tfc3NyCv2/jOC9GUxbbuHYreU05aCWvA7N9lczGoK/nS86JTVns8pwY8aM5faF5PXucu3rtllEy123ck5WcPzN9lbw3KDlfNx3Hkve4S6Epi9lxWvI83/VriYWUnMuyY6fpHmkxBp3FrMw4bNqn6fNkqhUAAAAAAMAyYgEFAAAAAACgxgIKAAAAAABAjQUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUDPWdgFdUVVVql2v11viSg6XratkXyW3mdlfIyPl1vGyx6ff7xfbZqb+bF2Zfd+0vZL7cylUVVV0jC1k0HktbdBZzO6vQfc16LxG5Pb96OjoUf2+bf1+f8F928a5uat9Zdp19Tqi5JjPyvQ1yOPY5bmgKYfZ88ig93lXlbze6uq5pqRB7q+uj79Sc2LJsTWo6+U2lbxXbOO+uZSS+Rj269P5+fmYn58/4u9L7qvs2Cp5HdhVmX2RHTtjY81vM5Z836aN6/mMYc/izMxMzMzMHPH3meO8mHaltDFfZ2T7ytSf3acl8zPMWWzqK7s/u/1OKwAAAAAAQAssoAAAAAAAANRYQAEAAAAAAKixgAIAAAAAAFBjAQUAAAAAAKDGAgoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1Y20XMCj9fj/6/f4Rfz8ykltLqqqqsU2v10vXVcpCr+2gTO2LaZeR2RfZ/VWyr9HR0VS7Lmp6jW2Mv8UolcXM68yO5UHvs5IZ66qSuc6OiZJKnG+GPYslj2EbY77knFFyDA56X3R135c8Pw9zFo/1OXHQOWzjNZbMWOY1Zq75I3J1ZfvK1DXMOYyImJ+fj/n5+SP+PpvFYb7HaMOg7xVL3vMP+p65VF9dz+LMzEzMzMwc8fddvT7t+n4toY3r5hLzz1LIzp8L6fp8ceDAgVixYsURf79y5cpi22pjXwzze0BtXJOUGPMHDfr83NRXdj/5BAoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUWEABAAAAAACosYACAAAAAABQYwEFAAAAAACgZqztApZaVVURETE1NbVgu5GR3FpSpl22r16v19jmYP1N+v1+sb6y7TIyrzEr8xozbYZd02s8ONZLHscS2shi1qCzOD8/n+qra8fwoExdJc83Xd0PTcdx2LM4Ojqa6q9kFksqmcWS80/J8VAyP5l90cYcW+L8vHfv3lS7QcrmcGwsd6ne1Tkx0y47rgad6a5eg5c812Sv0zPjq2l7wz4nrlixItVfZu4seX9UUskx30auM+3auB8etGM9ixMTE6n+MvNnyfdt2sh1yTkjk59sFufm5hrbDPv7Npl937Qfunh9GvHjeg7WdySzs7Op/jJZzN53Ztp1NddtZDFzjErO11kl7zUy+6JUFo/5BZSDE/AFF1zQciUwWFNTU7F27dq2yzjkYBZf8IIXtFwJDFZXs7hp06aWK4HB6lIWD+bwnHPOabkSGKwu5TDix1k899xzW64EBqurWbzwwgtbrgQGq6tZfMlLXtJyJTBYTVnsVV1b7iys3+/Hww8/HKtXrz60yjU5ORkbN26MHTt2xJo1a1qucHHU3o5hqr2qqpiamooNGzZ06l+G17M4TPv0mQxz/WofDFkcjGGuX+2D0cUsuj7tlmGuf1hq72IOI2SxS4a59ojhqV8WB0Pt7RmW+mVxMNTejmGqPZvFY/4TKCMjI/G85z3vGX+3Zs2azh/II1F7O4al9i79C4aDjpTFYdmnRzLM9at96cni4Axz/Wpfel3LouvTbhrm+oeh9q7lMEIWu2iYa48YjvplcXDU3p5hqF8WB0ft7RiW2jNZ7M4yJwAAAAAAQEdYQAEAAAAAAKhZlgsoExMTcf3118fExETbpSya2tsxzLV31bDv02GuX+081bDv02GuX+081TDv02GuPWK46x/m2rtqmPep2tsz7PV30TDvU7W3Z9jr76Jh3qdqb8cw134kx/yXyAMAAAAAACzWsvwECgAAAAAAwEIsoAAAAAAAANRYQAEAAAAAAKixgAIAAAAAAFBjAQUAAAAAAKBm2S2g3HzzzfETP/ETsXLlytiyZUt8/etfb7uklA984APR6/UO+zn33HPbLusZ3XvvvXHllVfGhg0botfrxec+97nDfl9VVbz//e+P0047LVatWhVbt26N7373u+0UW9NU+5ve9KanHYfLL7+8nWKH3DBmcZhyGCGL5Mji0pNFMmRxaQ1zDiNkcVCGMYcRsjgocjg4srj0ZJEMWVx6sjgcltUCym233RbXXXddXH/99fFnf/ZnsXnz5rjsssviBz/4QdulpZx33nnxyCOPHPr5yle+0nZJz2jfvn2xefPmuPnmm5/x9x/+8IfjYx/7WHzqU5+K++67L44//vi47LLL4sCBAwOu9Omaao+IuPzyyw87DrfeeusAKzw2DHMWhyWHEbJIM1kcDFmkiSwuvWHOYYQsDsIw5zBCFgdBDgdDFgdDFmkii4Mhi0OiWkYuueSS6m1ve9uh/5+fn682bNhQ3XjjjS1WlXP99ddXmzdvbruMRYuI6vbbbz/0//1+v1q/fn31kY985NCfPfHEE9XExER16623tlDhkdVrr6qquuaaa6rXvOY1rdRzLBnWLA5rDqtKFnlmsjh4ssgzkcXBGuYcVpUsLpVhzWFVyWIb5HDpyOLgySLPRBYHTxa7a9l8AmVmZia++c1vxtatWw/92cjISGzdujW+9rWvtVhZ3ne/+93YsGFDnHXWWfFzP/dz8f3vf7/tkhZt+/btsXPnzsOOw9q1a2PLli1DcxzuvvvuOPXUU2PTpk3x1re+NXbv3t12SUNl2LN4LOQwQhaRxa6QRWSxfcdCDiNk8WgMew4jZLEr5PDoyGI3yCKy2A2y2B3LZgHlsccei/n5+Vi3bt1hf75u3brYuXNnS1XlbdmyJW655Za444474pOf/GRs3749Xv7yl8fU1FTbpS3KwX09rMfh8ssvj8985jOxbdu2+NCHPhT33HNPXHHFFTE/P992aUNjmLN4rOQwQhaRxa6QRWSxfcOewwhZPFrDnMMIWewKOTx6stgNsogsdoMsdsdY2wWQc8UVVxz67wsvvDC2bNkSZ5xxRnz2s5+Na6+9tsXKlpfXv/71h/77ggsuiAsvvDB+8id/Mu6+++649NJLW6yMQZDD7pDF5U0Wu0MWlzdZ7A5ZXN5ksRvkEFnsBllEFrvhWMrisvkEysknnxyjo6Oxa9euw/58165dsX79+paqevZOPPHEOOecc+KBBx5ou5RFObivj5XjcNZZZ8XJJ588dMehTcdSFoc1hxGyiCx2hSwii+071nIYIYuLdSzlMEIWu0IOF08Wu0EWkcVukMXuWDYLKOPj43HRRRfFtm3bDv1Zv9+Pbdu2xUtf+tIWK3t29u7dGw8++GCcdtppbZeyKGeeeWasX7/+sOMwOTkZ991331Aeh4ceeih27949dMehTcdSFoc1hxGyiCx2hSwii+071nIYIYuLdSzlMEIWu0IOF08Wu0EWkcVukMXuWFaP8LruuuvimmuuiYsvvjguueSSuOmmm2Lfvn3x5je/ue3SGr3rXe+KK6+8Ms4444x4+OGH4/rrr4/R0dF4wxve0HZpT7N3797DVhO3b98e999/f5x00klx+umnx9vf/vb44Ac/GM9//vPjzDPPjPe9732xYcOGuOqqq9or+r9bqPaTTjopbrjhhrj66qtj/fr18eCDD8Z73vOeOPvss+Oyyy5rserhM6xZHKYcRsgizWRxMGSRJrK49IY5hxGyOAjDmsMIWRwUORwMWRwMWaSJLA6GLA6Japn5+Mc/Xp1++unV+Ph4dckll1R/+qd/2nZJKa973euq0047rRofH6+e+9znVq973euqBx54oO2yntFdd91VRcTTfq655pqqqqqq3+9X73vf+6p169ZVExMT1aWXXlp95zvfabfo/26h2p988snq1a9+dXXKKadUK1asqM4444zqLW95S7Vz5862yx5Kw5jFYcphVckiObK49GSRDFlcWsOcw6qSxUEZxhxWlSwOihwOjiwuPVkkQxaXniwOh15VVdXRLMAAAAAAAAAca5bNd6AAAAAAAABkWUABAAAAAACosYACAAAAAABQYwEFAAAAAACgxgIKAAAAAABAjQUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAQlF/+7d/G71e72k/r3zlK9suDZYVWYRukEXoBlmEbpBFaJ8cQjfI4vAYa7sAji0bN26MRx555ND/79y5M7Zu3Ro//dM/3WJVsPzIInSDLEI3yCJ0gyxC++QQukEWh0evqqqq7SI4Nh04cCBe+cpXximnnBL/9//9f8fIiA88QRtkEbpBFqEbZBG6QRahfXII3SCL3eYTKCyZX/iFX4ipqan40pe+JPjQIlmEbpBF6AZZhG6QRWifHEI3yGK3WUBhSXzwgx+ML3zhC/H1r389Vq9e3XY5sGzJInSDLEI3yCJ0gyxC++QQukEWu88jvCjuP/yH/xBveMMb4vOf/3xceumlbZcDy5YsQjfIInSDLEI3yCK0Tw6hG2RxOFhAoahvf/vbsWXLlrjuuuvibW9726E/Hx8fj5NOOqnFymB5kUXoBlmEbpBF6AZZhPbJIXSDLA4PCygUdcstt8Sb3/zmp/35K17xirj77rsHXxAsU7II3SCL0A2yCN0gi9A+OYRukMXhYQEFAAAAAACgZqTtAgAAAAAAALrGAgoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUWEABAAAAAACosYACAAAAAABQYwEFAAAAAACgxgIKAAAAAABAjQUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUGMBBQAAAAAAoMYCCgAAAAAAQI0FFAAAAAAAgBoLKAAAAAAAADUWUAAAAAAAAGosoAAAAAAAANRYQAEAAAAAAKixgAIAAAAAAFBjAQUAAAAAAKDGAgoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUWEABAAAAAACosYACAAAAAABQYwEFAAAAAACgxgIKAAAAAABAjQUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUGMBBQAAAAAAoMYCCgAAAAAAQI0FFAAAAAAAgBoLKAAAAAAAADUWUAAAAAAAAGosoAAAAAAAANRYQAEAAAAAAKixgAIAAAAAAFBjAQUAAAAAAKDGAgoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUWEABAAAAAACosYACAAAAAABQYwEFAAAAAACgxgIKAAAAAABAjQUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUGMBBQAAAAAAoMYCCgAAAAAAQI0FFAAAAAAAgBoLKAAAAAAAADUWUAAAAAAAAGosoAAAAAAAANRYQAEAAAAAAKixgAIAAAAAAFBjAQUAAAAAAKDGAgoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUWEABAAAAAACosYACAAAAAABQYwEFAAAAAACgxgIKAAAAAABAjQUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUGMBBQAAAAAAoMYCCgAAAAAAQI0FFAAAAAAAgBoLKAAAAAAAADUWUAAAAAAAAGosoAAAAAAAANRYQAEAAAAAAKgZa7uApdbv9+Phhx+O1atXR6/Xa7scWHJVVcXU1FRs2LAhRka6s0Yqiyw3sgjd0MUsyiHLTRdzGCGLLD+yCN0gi9AN6SxWQ+ATn/hEdcYZZ1QTExPVJZdcUt13333pv7tjx44qIvz4WXY/O3bskEU/fjrwI4t+/HTjp0tZlEM/y/VnKXIoi378LP6nS3OiLPpZzj+y6MdPN36astj5T6Dcdtttcd1118WnPvWp2LJlS9x0001x2WWXxXe+85049dRTG//+6tWrIyJix44dsWbNmqUuF1o3OTkZGzduPDT2S5FFWBxZhG7oYhblkOVmqXIYIYuwGF2cEyNkkeVHFqEbslnsVVVVDaimZ2XLli3xkpe8JD7xiU9ExI8+TrZx48b41V/91fi1X/u1xr8/OTkZa9eujT179gg/y8JSjXlZhMWRReiGLmZRDllulnLMyyLkdXFOXMq6oKtkEbohO+a786C9ZzAzMxPf/OY3Y+vWrYf+bGRkJLZu3Rpf+9rXnvHvTE9Px+Tk5GE/wNGRRegGWYRuWGwW5RCWhixC+1yfQjfIIiydTi+gPPbYYzE/Px/r1q077M/XrVsXO3fufMa/c+ONN8batWsP/WzcuHEQpcIxTRahG2QRumGxWZRDWBqyCO1zfQrdIIuwdDq9gPJsvPe97409e/Yc+tmxY0fbJcGyJIvQDbII7ZND6AZZhG6QRegGWYScTn+J/Mknnxyjo6Oxa9euw/58165dsX79+mf8OxMTEzExMTGI8mDZkEXoBlmEblhsFuUQloYsQvtcn0I3yCIsnU5/AmV8fDwuuuii2LZt26E/6/f7sW3btnjpS1/aYmWwvMgidIMsQjfIInSDLEL75BC6QRZh6XT6EygREdddd11cc801cfHFF8cll1wSN910U+zbty/e/OY3L6qfmZmZmJmZOeLvq6pK9ZNp1+/3U33Nz883tpmbm0v1NTs729gmW1ev1yvSJivb1+joaGObFStWpPoaG2se+tm6Br2/miw0zo9GqSzOzs4uOF7byGImZ9ksZnKdrStjZKTcOnh232fGcyZj2XaZ7Efk9kU2i9l9sZDp6emj7uOZlMri3NzcguO6ZBYzuci2y8x3EbnMlpwX28hiRrauTM6yuc70Ncj9deDAgWLbeqoSWWzKYVZmLLcxJ2bymj0/dPX6NJPXbF+ZXJScX7M5zNTftB/279+f2taz0aUsDvP1abavknNUxiDvow4adBaz17pdzuKg7hWzSmYx067ktW62r5Jzf8m5LNNXdv7JtMvmZ9D3nU26fH0a0fweakkl30Nto69BZ7FkX129VxxkFrPzYucXUF73utfFo48+Gu9///tj586d8aIXvSjuuOOOp30pErC0ZBG6QRahG2QRukEWoX1yCN0gi7A0etWg/wnJgE1OTsbatWvj0UcfjTVr1hyxnU+g/FhX/4WfT6DkTE5OximnnBJ79uxZcMwP2sEsPvbYY53Lok+g/IhPoPxYialxcnIyTj311M5mcffu3QPLok+gLI5PoCxO0/6anJyMdevWdSqL2Rxm+QRKvk2WT6D8WIl/9T45ORnr16/vVA4jymdxmK9PfQLlx47lT6B0PYtN94pZPoGSbxPhEyiL7avEdWwXr08j8u+hluQTKD/mEyj5NhHlspiZFzv9HSgAAAAAAABtsIACAAAAAABQYwEFAAAAAACgxgIKAAAAAABAjQUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAasbaLmBQqqqKqqoW/H0X9Xq9Yn1lX2O/329sk61rZKR5jS7TZjHtMkq+xpLHqIT5+fm2S1hQqSxm2mX7yhzDksc5M/5Ky+SnZK6zSu6LzPHOvsYS42tubi61rbY0ZXEx/QxSyXNzyfNNVskslpR5jSXzOsi+Zmdni22rtH6/v2D9bYyFknPioHNYch4r+Rrb2F+ZjA3ymqvLOYxozmJWyevTkkrWNej7qOx1Z8nzZVev+0vM1TMzM6XKWRKlsphRcsxnay55bi5ZV8kslrxXHPT7Ydn3UjLtmvb99PR0alttGeS9Ysn8ZO/BS9ZVYjwclBnzo6Ojqb4GncXseMnsr5LXSk19ZbPoEygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUWEABAAAAAACosYACAAAAAABQYwEFAAAAAACgxgIKAAAAAABAjQUUAAAAAACAmrG2CxiUqqqiqqqBbKvX66XajYw0r1/1+/1UX6Ojo41t5ufnU31l9lP2NWbaZfZDtl22royS46Xk/hpEH0tpkFksqY2xlcl/yX05NpabEjJZzOZ6mDPb1Ca7D9oyyCxmt1Oynkx+snNspl32eGfm60yb7DZLZrGr80vTa+xyFptyWDI7Jcd7yb5KzonZMZrZZrauktenJTNd0nK4Pu33++lxfbSy92SZdiX7aiPXGXNzc6l2mbmzjWvdQWe2KWtdz2KTNubFTH6y47RkFjPbLPkeUPb6NJOzkn21ca07jO9nLFav11twf5TMYnacZsZ8Nosl57LMNmdnZ1N9lcziihUrGttk58XMNkte7w5yrkrXvcR1AAAAAAAADB0LKAAAAAAAADUWUAAAAAAAAGosoAAAAAAAANRYQAEAAAAAAKixgAIAAAAAAFBjAQUAAAAAAKDGAgoAAAAAAECNBRQAAAAAAICasbYLGJRerxe9Xu+Iv6+qKtVPpl2/30/1lW2XsdBrO2h0dLRYXyMjubW3sbHmIZatK7PNTO10WzaLmfzMz8+n+sq0K5nXkrL7q6RMzrJZlNn2VFVVZPxk8jM3N1esr2yuB52N7Dmi5BxbanuLaUdZg7w+zWZndna2sU0205lclByj2f2V2RclzyElM83SGBkZKXKcMmO+5DjNZjGzzZJZbON+OCP7GjNjoeT5eZBzddfn+6Z5MVt/ySyWvO8sOR4y47SN++GSr7GNe92MEvfDXc9iF2XGQ8kxUzKL2WuMzLyezXXJ921Kvh9bsq4S28seG1fzAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUGMBBQAAAAAAoMYCCgAAAAAAQI0FFAAAAAAAgJqxtgvoiqqqUu36/X5jm9nZ2VRfc3NzqXaljIzk1ssy7Urur5Kyr7HX6xVpk5XdX8O2raXQRhYz7Uru1+zYKpnFzPkmm9exseapY3R0NNVX5jVmc11SZr82HceuZ7HX6y34GrLjIfM65+fnU31NT083thn0vJKVrSuzL7LXByWzOOhcDzIfXR0zJZXMYWb8ZcdoyeNc8jWWHBOZ7JScXzNtInI5zF6PlDiOXc9h05yY3QeZdiXni5L7tauvsWRdbVyblbimLKnrWRykkmOrDSXf0xj0e0DZ64iSrzFTf8n7zqbtdXVcHVRVVedrfCZt1JwZg9n7qIyuztcl85PNdYn5M7s/O/0JlA984AOHLmYP/px77rltlwXLjixCN8gidIMsQjfIInSDLEL75BCWTuc/gXLeeefFnXfeeej/s//qCihLFqEbZBG6QRahG2QRukEWoX1yCEuj80kaGxuL9evXt10GLHuyCN0gi9ANsgjdIIvQDbII7ZNDWBqdfoRXRMR3v/vd2LBhQ5x11lnxcz/3c/H973+/7ZJgWZJF6AZZhG6QRegGWYRukEVonxzC0uj0J1C2bNkSt9xyS2zatCkeeeSRuOGGG+LlL395fPvb347Vq1c/49+Znp4+7EtoJycnB1UuHLNkEbpBFqEbFptFOYSlIYvQDbII7XOvCEun0wsoV1xxxaH/vvDCC2PLli1xxhlnxGc/+9m49tprn/Hv3HjjjXHDDTcMqkRYFmQRukEWoRsWm0U5hKUhi9ANsgjtc68IS6fzj/B6qhNPPDHOOeeceOCBB47Y5r3vfW/s2bPn0M+OHTsGWCEsD7II3SCL0A1NWZRDGAxZhG6QRWife0UoZ6gWUPbu3RsPPvhgnHbaaUdsMzExEWvWrDnsByhLFqEbZBG6oSmLcgiDIYvQDbII7XOvCOV0egHlXe96V9xzzz3xt3/7t/HVr341Xvva18bo6Gi84Q1vaLs0WFZkEbpBFqEbZBG6QRahG2QR2ieHsHQ6/R0oDz30ULzhDW+I3bt3xymnnBIve9nL4k//9E/jlFNOWXRfvV4ver3egr/PqKqqsU2/30/1NT8/X6yvbP0ZmbpmZ2dTfWXbZaxYsaKxzfj4eKqvTLuxsVw8RkdHG9tkj0+mXdMYzBy/xSqZxSYls5hpE5HLWcksZuuam5trbHPgwIFUX5l22bGTyc/KlStTfWXaTUxMpPrKZDaT16ymY931LFZVlR6LTf2UaFNye9l22b5mZmYa2zz55JOpvvbv39/YJjt2MmN+1apVqb6OO+64xjbZXGfOEdkslri+6XIWm3LYxjVlpl3JHGbryuQwk6+IsnPiyEjzv0fLXp9m8prNdGbuLJnDNubEiHJZ7Pf7C47F7DjNXLtl2mTbZevKKDknPvULiY+2r+z+ytSfvb/L5CebxZL3nZnzzbBncZDzYnZsZcZpdr8O+n2bbF2Z920y+yEil8Xsfih5r5h5P6lkFpt0+fo0o6tZzPaVUeI4H1Ty2jn7GjPHKNtXJj/ZMZHJWXbfD/IatdMLKH/4h3/YdglAyCJ0hSxCN8gidIMsQjfIIrRPDmHpdPoRXgAAAAAAAG2wgAIAAAAAAFBjAQUAAAAAAKDGAgoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1FlAAAAAAAABqxtouYFCqqoqqqo74+36/n+pnfn6+VEkxMlJu/Wqh13bQ3Nxcqq/p6enGNnv37k31NTU11dgmU3tExMqVKxvbrFmzJtXX8ccf39hmYmIi1VdG9lj3er3GNk37KzuWuypbf2bcZMdWZr9n2kTkzhHZLO7fv7+xzeTkZKqvTLuZmZlUX6tWrWpss3bt2lRfq1evbmyTPY6DzuyxnsXsfs+8zpK5LjlfZ8f8vn37Gtvs2bMn1VdmXsyeI1asWNHYJpvFzDZLHsfx8fFUX6Ojo41tms7P2bHchkFen87Ozqb6yoyF7PVwZt+XzGF2TnzyyScb22RzODb249upflXFA3si9sxErB2POHttxEivl7qGjcjti+xxPOGEExrbZOfNp77GIyl5X9OGfr+/YN6yYz5zfDL3Wtm+sue3TLvsa8zkJ3MNG1F2zGfOl5k5JSJ335mtq+R9Z2beb8pil+fEiHLzYsksZsZpyev+bF+ZeSo7x5bcX9n5MyOTxUzGInL3sObFvOy5ZNDjtOR7tlkl72EHncXsOM1kMXu9m8lZJmMRufpLzYvLZgEFAABgKfz5o1V89oEqnnjKewAnjkf8s7MjXrqxvboAAICjYwEFAADgWfrzR6v4P/766f967YmZiP/jr6tYMT4XF69z2wUAAMPo2P5MGQAAwBLpVz/65MlCbv2vs9Hv+GNzAACAZ2YBBQAA4Fl4YE8c9tiuZ/L4gSr+5ofD/b1YAACwXFlAAQAAeBb25L73NJ6Y9gkUAAAYRhZQAAAAnoW147l2J070lrYQAABgSVhAAQAAeBbOXhtxYsMiykkre3HO33PbBQAAw8iVPAAAwLMw0uvFPzt74U+XvOHcFTHS8wkUAAAYRhZQAAAAnqW/f0ovfumFvad9EuXvTUT80gt7cfG6sXYKAwAAjtqyuZqfn5+P+fn5I/5+dnY21c/c3Fxjm6rKfUlkL/Ev0UZGcmtcmfqnp6dTfe3bt6+xzZNPPpnqK1NXZj8spl0p2eOYbcePNGVxod89Vb/fb2yTHTOjo6OpdhmZc0Q2i5mczczkvr028xpPOOGEVF/HHXdcY5uVK1em+lqxYkVjm+x5cNCaxtegz1mL1e/3F8xRyXNbNmMlt5k5l2Tzc+DAgSLbi8hlY2Jiolhf2SyOjzd/kUPJLJac+4c5i1VVFRn3mWMzNpa77M/sr+x4z1wHZvvKzJ2ZOTgiN95Xr16d6utgXv/hyRH/4Nwq/utjs/HDA/34eytH4tyTV8Ror5fe95lzZcnjmM1GZnx1OWeDlNkP2Tkx01f2/JHJWfZ+ODN3ZufXjFWrVqXalRyngx7zJefEptq7ntWmeTFzD3iwnybZfZG5X8nK1J+9V8y0y1zDRpR9nyuj5L1ByfcPSr7GrmetSaksZo5Ptq+S5+ZMu+x1ZWb+zGYxk+vsfJ3Z9yWvK7O5zmyz5LVSKctmAQUAAGCpjPZ6cd4pyW+VBwAAhkI3/1kvAAAAAABAiyygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUGMBBQAAAAAAoMYCCgAAAAAAQI0FFAAAAAAAgJqxtgvoitHR0VS7qqqKbbPX6zW26ff7qb7m5uaKtImI2L9/f2Ob6enpVF+Z+lesWJHqa2ysebhm+xoZaV47zLSJyI2J7HHMjIkmJcfoUhgZGUnv26Z+mmTGTFbJY3jgwIFUX5ljmd2Xxx13XGObiYmJYn2tWrUq1Vcms9nzc4lxtRhNx2e5ZDFzfLL7ouT5NJOzbF8zMzONbbKvMTPmjz/++FRfmZxlz4OZc1d2vGTGRHa+KzEvdllTDrPnv8y4yp7jM2M5O95nZ2cb22THVaavbF2Z/ZqZ6yJyeS05P2Uzkcl+dnxlttnUputZHh0dXXB/ZI9hZr+vXLky1Vdmn2XHfOY+MDseMveBmXkzK3vuyuzX7GvMKHl+zo6vkmOiq5rmxex1TWafjo+Pp+tqkj3Hzc/PN7YpmcXse0Al5+vMfs0ex0G/B5Q9jiXuWYY9q1kls1jiemQxsu97Zua87Lz45JNPNrbJ5nrQ73tmx3TmHjx7n545pza9xmzdPoECAAAAAABQYwEFAAAAAACgxgIKAAAAAABAjQUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1Cx6AeWaa66Je++9dylqARbhl3/5l+O//Jf/0nYZsOzJInTDW9/6VlmEDviVX/mV+OpXv9p2GbDsve1tb5NFaJkcwrFh0Qsoe/bsia1bt8bzn//8+M3f/M34u7/7u6WoC2gwOTkZV111Vbz4xS+O//V//V/j4YcfbrskWJZkEbphcnIyXvva18ZFF10ki9Cig1m8+OKL46Mf/agsQksmJyfj6quvjpe85CXxO7/zO/HII4+0XRIsO1NTU/FP/sk/iUsuuUQOYYiNLfYvfO5zn4tHH300fv/3fz9+7/d+L66//vrYunVrXHvttfGa17wmVqxYsRR1HrUVK1YUqW18fLxANXn9fj/VbnR0tLHN/Px8qq/Z2dki24vI1Z/ta2JiorHNyEhuTbDX6zW2qaoq1VemXfY4Zuo62Obf/bt/F4899ljcdtttceutt8aNN94Yr3jFK+Lqq69ObastY2NjMTZ25FNPZh+0ITseMueZ7Lkoc76Znp5O9ZWpf6Hjsth22deYyX/JMZE9jpnMyuLi2pWSPYaZ/KxcuTLV1wknnNDY5sCBA6m+Bp3FNs6pJbe5mCz+X//X/3Uoi3/4h38Yv/Vbv9X5LA5rDrMy127Za+vjjjuusc2TTz6Z6mtubq6xTVdzmD0HDnqbT23zmc98Jh577LH47Gc/G7fddlv81m/9VvwP/8P/EBG5+4w2jI6OLnhNUnJ/tpHXzDHMZjGT68nJyVRfmevY7P1dJosl7xWzxzG7zYzsPeVBt9xySzz22GPxR3/0R3HbbbfFhz70ofipn/qpiBjeLGbfO8hoI9eZY1jyPio7l+3bt6+xTWbujMiN+exrzLTLjomS7wFljuPBNp/+9KcP5fDf//t/Hx/+8Ifj5S9/ebz2ta9NbastIyMjCx7L7NgadGZL5jr7Gku+J5hpl73vXOycsZCu3vNn3udu2g/pc1uqVc0pp5wS1113XfzFX/xF3HfffXH22WfHG9/4xtiwYUO84x3viO9+97upfu6999648sorY8OGDdHr9eJzn/vcYb+vqire//73x2mnnRarVq2KrVu3pvuG5eDkk0+Ot73tbfGVr3wl7rzzzjjrrLPiHe94R0REvPe975VFGBBZhG44mMUvf/nL8aUvfUkWoSUnn3xy/Mqv/Ercc8898YUvfCHOOOOMiIjYtGlT+n5RDuHonXzyyfHLv/zLcdddd8XnP/95WYQWHMzhtm3b4j/9p/8UZ555Zrz73e+OCNenMCyO6p9DPPLII/GlL30pvvSlL8Xo6Gj8o3/0j+Jb3/pWvPCFL4zf+Z3fafz7+/bti82bN8fNN9/8jL//8Ic/HB/72MfiU5/6VNx3331x/PHHx2WXXZZebYPlYufOnXHXXXfF3XfffWiF/6/+6q9kEQZMFqEbdu7cGXfffbcsQst27twZ99xzT3zlK1+JiIhXv/rV6ftFOYRydu3aFffcc8+h7wqTRRi8Xbt2xb333hv33HOP61MYMr0q+7mY/252djb+43/8j/G7v/u78cUvfjEuvPDC+MVf/MX45//8n8eaNWsiIuL222+PX/iFX4gf/vCH+UJ6vbj99tvjqquuiogfrZxu2LAh3vnOd8a73vWuiPjR96+sW7cubrnllnj961+f6ndycjLWrl0bjz322KH6jsYid9dRy37kamZmprFN9qPUTzzxRGObkh8Zy36kL/PohlWrVqX6ynz0PPtxvcxHVEs+guNgm9nZ2fj85z8f/+7f/bu466674rzzzos3vvGNcdlll8X5558fe/bsiW3btnUui7t3714wi119DEk2+5mPw+/fvz/VVyazXX2EV/YxECUf4ZXJ4lI8umFYs/j4448XyeIwf5w3M3dG5B5r4BFei9vmUmbxD/7gDw7L4qtf/eq44IILOpXFYc9hVma8Z3OYeTyXR3gtbpvZHC72EUSzs7Nxxx13xB/8wR/E3XffHS984Qvjn/7Tfxr/+l//69izZ0+sWbNm0feLwzInZnT1EV7ZRzpl5kSP8FrcNrP3w88mi1/4whfi1ltvjXvuuSde+MIXxtVXXx3vf//7O5vFpnvFkrr6CK9sFvfu3dvYJvPeTsRwP8IrO1+XfNT2YrJ4MIe33XZb3HPPPfGCF7wg/vk//+fx6le/Ol784hd36vo04sdZfPTRRxfMYva9ypLvoQ76EV7Za9RMFrPzYqZdyfdjs2O+5PuxmcdoZ+sqMSampqbinHPOOTQvHsmivwPltNNOi36/H294wxvi61//erzoRS96WptXvepVceKJJy6268Ns3749du7cGVu3bj30Z2vXro0tW7bE1772tSOGf3p6+rALsewghWFz7rnnRr/fj6uvvjq2bdsWF1xwQUQcPuZlEZaeLEI3vOAFLziUxTvvvLNTWZRDlpPzzjsv+v1+/OzP/mx88YtfjAsuuCCmpqbiX//rf32ozdFm0ZwIzS688MLo9/vx2te+Nu644444//zzY2pqKt7//vcfaiOLsLQ2b94cVVXFVVddFX/yJ38S559/fkT86E3bg9wrQvctegHld37nd+Kf/tN/uuCK0Yknnhjbt28/qsJ27twZERHr1q077M/XrVt36HfP5MYbb4wbbrjhqLYNw+A3fuM34qqrrpJFaJksQjf8xm/8RrzmNa/pZBblkOXkgx/8YPzMz/zMkmbRnAjN/s2/+Tdx5ZVXyiK06IYbbljyHEbIIiy1RX8Hyhvf+MbUx23a8t73vjf27Nlz6GfHjh1tlwRL4vWvf70sQgfIInTD6173us5mUQ5ZTv7ZP/tnsggd0PQPX9skiywXXc5hhCxC1lF9ifxSWr9+fUT86EuWnmrXrl2HfvdMJiYmYs2aNYf9AM+eLEI3yCJ0w7PJohxCWeZE6AZZhG6QRVhanV1AOfPMM2P9+vWxbdu2Q382OTkZ9913X7z0pS9tsTJYXmQRukEWoRtkEdonh9ANsgjdIIuwtBb9HSgl7d27Nx544IFD/799+/a4//7746STTorTTz893v72t8cHP/jBeP7znx9nnnlmvO9974sNGzbEVVddtehtjY6Oxujo6BF/3+v1ns1LOCpVVRVpE5Gr//jjj0/1NT8/39hmfHw81Vem/oWOy2LbjY3lhvTISPPaYaZN6b4ymo71s9nWcs9iRsksZo9RZswfOHAg1Ve/30+1KyX7Gkvur0y77PjKtGtq82zG8iCzODIysuA+62oWs3VlxkN2/lmxYkVjm9nZ2VRfc3NzjW1K5jV77sq2K6VkFpfCoLI4rDnMytQ/MTGR6itzjXfcccel+srkNZvDp2Znvl/Fn+2YjMf2zcTJx4/HizeuidGRXtEcPpu6jqTr46tLc2JWV/dppq7s/V0mi6tWrUr1NTMz09gmM29G5O5hs0rep2eUHDdN47jr94q9Xm/B/THIa/mlUPK9g5JZzNxTZu87s9fEGYO+ty55Dzvs79s0ZTF7H1Uyi4PObPY1lsxi5hNA+/btS/WVyWx2LstcI5S8jiiZxVJ9tLqA8o1vfCNe9apXHfr/6667LiIirrnmmrjlllviPe95T+zbty9+6Zd+KZ544ol42cteFnfccUennx8Iw0gWoRtkEbpBFlmsbd/ZHR++83uxa+rHbwivWz0e79l6VvyDc05qsbLhJYfQDbII3SCL0J5eNeh/cjhgk5OTsXbt2vjhD3+44EresH8CJfMvc5588slUX5OTk41tpqenU30N+hMomX8lnG3XxqdZMprG6uTkZGzcuDH27NnTqedXHsziE0880bksZmSzmPmXodl/SVfyXwL5BEp+e9l2mSyefvrpsthh2VxkMusTKIszyH9pNjk5GT/xEz/RqSzK4Y9lx17mX5dn59fSn0DZ9p3d8a7b/2vUX8nBo/eRqzbFpZuek+qrZF1NBpnDqampOPPMMzuVw4h8FrOGObMlr3UznyzJtvMJlMW1a7oenpqairPOOquzWXz88ceLzItd/QRKRvY8nxnz2fdtfAIl3yaizPiampqKs88+u7NZfOyxxwY2L3b1EyjZLGbGfDaL+/fvb2wz7J9AybQrmcUmU1NT8fznP78xi539DhQAAIAum+9X8eE7v/e0xZOIOPRnH9m2Peb7x/S/WQMAgGOWBRQAAIBn4c92TB722K66KiJ2Tc3Enz/U/AlvAACgeyygAAAAPAuP7cs9qujRvbl2AABAt1hAAQAAeBZOPj73vOdTTsi1AwAAusUCCgAAwLPw4o1rYt3q8TjSV1j2ImLd6vH4+8/rzhfEAgAAeRZQAAAAnoXRkV68Z+tZERFPW0Q5+P/vvvTMGB050hILAADQZRZQAAAAnqVLNz0nfvu158apqw9/TNepq8fjt197bly66TktVQYAABytsbYLGJRerxe93pH/5ddCvxsGIyPNa2HZ11hyX2T6Gh0dTfU1NtY8XDP7ISJXV7avTP0l62pqk9lPbWrKYldla84c65JjPttXRlVVxdr1+/1UX5n9la0ro+RxbOorm/u2DGsWS8q+/kzOSuYna35+vrFNNouZdtnaS879JebFLo9zOSybw5Iy+Xpqu3/4glPiH2w6Of5sx554dO9MnHLCeLx449oYHektuq8SdWUM8lp32Mf5sNefUfIaaXw8950/JeeLubm5xjbZ/GT6ys6vGdnXmNn3w57FUu/bdP11LqTkewclt5kdpzMzM41tslksmbOSMvui6fgM+rpmsUZGRorcz5a4li+9vdJ9lXx/scR5/qDMXJzNYtfu7xazzVLvoXb7nVYAAIAhMDrSi5eccWLbZQAAAAV1+5/HAgAAAAAAtMACCgAAAAAAQI0FFAAAAAAAgBoLKAAAAAAAADUWUAAAAAAAAGosoAAAAAAAANRYQAEAAAAAAKgZa7uA5azX6w20r7Gx3OFesWJFY5vZ2dlUX/1+v7FNdj9k2pXsK6tkXSMjR7+mWfK1sTTaOEbz8/ONbTJ5jSg75jPbrKoq1Vdmm9mMlXiNsri8ZPMzNzdXpE12m5nsZ/vKZrHEXHZQyfMNHJQZ79kclsx05vo6m+mS9wYlcpg9f7Sl1+s5lxSUPd6ZdiXn1+w9bFezWGp7XSaLZZXcl9lcl7w+zbRr4/o001fJXHeRnP7YoN+rbON9z4w23k/KZLFU9n0CBQAAAAAAoMYCCgAAAAAAQI0FFAAAAAAAgBoLKAAAAAAAADUWUAAAAAAAAGosoAAAAAAAANRYQAEAAAAAAKixgAIAAAAAAFBjAQUAAAAAAKBmrO0CKKPX6zW2GR0dTfU1Pj7e2GZ2djbV18zMTGObfr+f6quqqlS7Un1lt1eyLlisbH4ymZ2bm0v1NTbWPHVkzzeZc9fISG6tP7Mvsvsrs81M7RwbMuNmfn4+1df09HRjm8zcGZGbf0qO05LzYrauElk0Tx8bMscxm8PMnLh///5UX5ltZueekvNYhhyyVLLjNHPteeDAgVRfmbkze62bqT87pjM5y567SmQxu61hN+hrpDZkXmM2i5lxkb0+LZnFQR/Hklksta22VFW14P4veQ7M6mpmhzmL2bpKvm9TUokxkX6P6Ki3BAAAAAAAcIyxgAIAAAAAAFBjAQUAAAAAAKDGAgoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUjLVdAAvr9XqpdiMjzWthY2O5w71y5cpUu4zMNufn51N9ZV5jyf2V7SujqqpUu36/f9TbKtEHz15m3GTH1ooVKxrbZPOaGYMzMzOpvjLayGLJzGZy1LRPs+c2ui8zTkdHR1N9jY+PN7YZ5Jyx2G0OWokcdXlerKpqwX1f8ry2HLRx3fxU8/0q7v+7vbF732w85/gV8aLnnhCjI72i81i2r0yms7nP5LCpr9nZ2dS22tKUxZKGPdcl91NmX2Tn15JzdaauNubgubm5xjZNdZW83l8K/X6/yL4tmbNBZzY7HjLtsvuyxL3PYtuVUvK6OXusM3NaU16np6dT22pLUxaz+z1zbs60aUPJsZW9p8mco7Pn8Uy7bF2Z6+LscSx5jVoi1wcOHEhtq9VReu+998aVV14ZGzZsiF6vF5/73OcO+/2b3vSm6PV6h/1cfvnl7RQLxzBZhG6QRegGWWSx7nrgh/HaT38r3vYf/ibef8f2eNt/+Jt47ae/FXc98MO2SxtacgjdIIvQDbII7Wl1AWXfvn2xefPmuPnmm4/Y5vLLL49HHnnk0M+tt946wApheZBF6AZZhG6QRRbjrgd+GO/94+/FD/Ye/i9Sf7B3Nt77x9+Lux94op3ChpwcQjfIInSDLEJ7Wn2E1xVXXBFXXHHFgm0mJiZi/fr1A6oIlidZhG6QRegGWSRrvl/F79y9Y8E2N937ULz8rLUxOjLcj24aNDmEbpBF6AZZhPZ080FzT3H33XfHqaeeGps2bYq3vvWtsXv37gXbT09Px+Tk5GE/wNGTRegGWYRuWEwW5fDYdf/f7X3aJ0/qfrB3Nv7i4b0Dqmh5MSdCN8gidIMswtLo9ALK5ZdfHp/5zGdi27Zt8aEPfSjuueeeuOKKKxb8kpsbb7wx1q5de+hn48aNA6wYjk2yCN0gi9ANi82iHB67du/LfTn6Y8l25JkToRtkEbpBFmHp9KrsV9svsV6vF7fffntcddVVR2zzve99L37yJ38y7rzzzrj00kufsc309HRMT08f+v/JycnYuHFjPPHEE7FmzZoFtz/MModxbm4u1dfMzExjmwMHDqT6euqxOJKFTuZPNTLSvN43Ojqa6mtsrPnpddm+Mu0ytUeUGYeTk5OxYcOG2LNnz4JjfqEaljKLz7auY0m/30+1y2Q2m8X9+/c3tslkPys75jPtsrnIZDGb6xJ1TU5Oxumnny6LHZa9BMpkNpufTGYzc2dE/lySMejLwZLniKZcT01NxVlnndVqFpfr9WlJmfGevdbNZCybw/u2/zDe9h/+prHdJ3727Hjx81Yv2CbzGrO5z2S65PzalNWpqanYtGlTZ+fEpiyWNOy5LpnFzNyZzWLJ+86SWczIjonMnJjJ4gtf+MLOZvHxxx8vksXMPs3u90FntuT16exsbvE+k58nn3yyWF/ZLJa8Ps0cx0HeK05NTcV5553X2Sw++uijC9aVPTYlzlsHlcx1RvY1ZsZz9l5x3759jW327s19qrlkFjPvoWaPY9fet8lmsdOfQKk766yz4uSTT44HHnjgiG0mJiZizZo1h/0AZckidIMsQjc0ZVEOj10veu4JceoJKxZsc+oJK2LzhhMGVNHyZU6EbpBF6AZZhHKGagHloYceit27d8dpp53WdimwrMkidIMsQjfI4vI1OtKLd7xy4cddvP2nn+cL5AdADqEbZBG6QRahnObP4CyhvXv3HrYSun379rj//vvjpJNOipNOOiluuOGGuPrqq2P9+vXx4IMPxnve8544++yz47LLLmuxajj2yCJ0gyxCN8gii/Gqs/9e3PiPz4rfuXvHYV8ov+6EFfH2V26MV5y1tsXqhpccQjfIInSDLEJ7Wl1A+cY3vhGvetWrDv3/ddddFxER11xzTXzyk5+Mv/zLv4zf+73fiyeeeCI2bNgQr371q+PXf/3XY2Jiongt2WfbdfWZtZm6Ms+si8g9Qy7b16pVqxrblHwWbUklj3X2NZboK/uc4KcaZBarqiryLNOuZjEjW3smZ5mMRUSsWLHw40Ui8uM00y57jDPtSj77tuRzTJvOSdlnDj/VILPY7/eLnFcH/Szakko+czyTsWxf4+Pjqb4y47TkHFvymdwlv8ehKWtdzuL8/PyCx6jk89m7+qz3rExd2WcvZzKW3Q8Hv+vhivNPi1e/cH382Y7JeGzfTJx8/Hi8eOOaGB3pFZ1fs9kpmeljPYcH61uoxpLzRRu5zhj0dw1EDP47LrO6uu8zuW46jwx7FrMG/T2lbYyHTLuSc0ZJJesqeb7J1lXifrjr79vMzc0t+H1WJb8DpeT3D5dU8rtrs9+BkhkXJfvKXqNmtpmdhzP3zdljncl/01jNfq9wqwsor3zlKxd8IV/4whcGWA0sX7II3SCL0A2yyLMxOtKLl5zh0yalyCF0gyxCN8gitGeovgMFAAAAAABgECygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUGMBBQAAAAAAoMYCCgAAAAAAQI0FFAAAAAAAgJqxtgsYlKqqoqqqI/6+1+ul+2mS7aurMvWPjo4OdHsREf1+v7FN5vhk+8q0yW5zfn4+1VemXVOb6enp1Lba0u/30/t2IZlxkx1bw5zZbO2ZzJbcX9ljPOgsZs8Rc3NzjW2asjgzM5PaVlvm5uYWfJ3Z8TAy0vxvMUqOrZJ5zY6HknN/pl1mn0bk6srmp+R+zdRfcr5uymsmz22ZnZ2N2dnZI/4+OxYy7Ur21YbsmOliXyXnsZLzfsm5uqn2kvt8KczMzCw4b2dzkdnv2fuoYZ4Ts/c+Ja8DM+f6hc63i91myXNqyfcimvbDcsli5nWWzHXJY5g9RpmcZa+BMu2yfWVyln3PIrMvsufUFStWpNqV0nR8SrwnspTm5+fT5/KFdPU91JJzWea+/8CBA8X6ymYxU392Xix5vVtSZuw07a/s+zbdvEMCAAAAAABokQUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUGMBBQAAAAAAoMYCCgAAAAAAQM1Y2wUMSr/fj36/f8Tf93q9VD+ZdlVVFesrK7PNbF0L7aeD5ufnU31l2s3NzaX6KllXpq9Mm9J9ZfZF02vcv39/alttmZ+fX/A1ZHMxMlJu/TebjUH3VXJsZbLR1Vxn92mmXcn91fQaZ2ZmUttqS1MWS2as5BxbUsl5cZBjazHtZmdnU31l6mrjWqnEuSt7bmtDUw7bmJ8yYzk7Frp6fZrJTvYcPj09XayvzL4YHR1N9ZVpV/I4Nh2f7DmyLU1ZzCo5j5U8l3btGumgTDYOHDiQ6itzD1Qyi+Pj46m+Mu2yuc5oqr3kvLIUqqpasMaSc0ZWyfuVTF8lrwOzY37QWcz2lZHNYmbfZ/sqcX7uehYH+R5qyfchSl4LZu+jMteCmTZt9FVyXszu+5LXSpn3LEpl0SdQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUGMBBQAAAAAAoMYCCgAAAAAAQI0FFAAAAAAAgBoLKAAAAAAAADVjbRcwKFVVRVVVbZdxmH6/X6RNtt3c3Fyqr/n5+SJtIsrWlWmX7StTV8nxku0rs19nZ2cX/P2BAwdS2+qq7L7KtCvZVzaLmTFYMj8lzxHZukpmMbPNXq+X6ivbLqNEFmdmZkqVsyR6vV6RfTboLLYxTkvmp2RfTWMw2yYiV9fISO7f3YyNNV9eZvsqcR2R3QdtGBkZWXBfZDNaMoclr90y+z57rszkouRcna1renq6sU3JMZjJV0TEypUri/WVGYdNxyc7ZtoyOjoao6OjR/x99pyV2VdtjNPM/UG2r5LXupltZjKWbZd9jZnjmMlYRMSqVasa20xMTKT6yozDpvHV5TkxoptZzIybJ598MtXX/v37i2wvouy1bsnzTaZdySxm81Pyfa4SWcye29rSdI2azWJGNouZuWzv3r2pvjLtsseoZBYzsvur5L1iRraujJJZbLoHyr6H6hMoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUGMBBQAAAAAAoMYCCgAAAAAAQI0FFAAAAAAAgJqxtgtYalVVRUTE1NTUgu16vV6qv2y7jIO1LaTf76f6yrSbm5tL9TU/P1+kTUTuNWbryrTL9pXZX5nas7J9ZeqanZ1d8Pf79u1b1DYHJZvFrJGRcuu/JbOYGYPZ/GS2ma0r8xqzdZXMYmabbZyfM3U1vca9e/dGxPBmsavzYhvjtGRdmcxm+2qaDyLKzovZ8+7o6Gixvkrsry5mscs5LHlNmWk3MzOT6iuTi5JzdSZfERHT09PF+soYG8vdvmVeYyarEbnx1bTvu5jDiHwWs+esTLvsPig5Tg8cONDYpmQWs/NYZpuZjGX7yr7GzJjPvsZMu+xxzIwvWfyREuetgzLjZv/+/am+Mu2y46HktW7J882gs1jyWneQWRz2921Kvh+TzWJmPjh4jmtycP8f7fYiyrx3sBjZ/ZUZzyWvUVesWJFqV/L+oMR1VzaLx/wCysHQn3nmmS1XAoM1NTUVa9eubbuMQw5m8ayzzmq5Ehisrmbx7LPPbrkSGKwuZfFgDs8555yWK4HB6lIOI36cxXPPPbflSmCwZBG6oatZfMELXtByJTBYTVnsVV1b7iys3+/Hww8/HKtXrz60ej05ORkbN26MHTt2xJo1a1qucHHU3o5hqr2qqpiamooNGzYU/VcBR6uexWHap89kmOtX+2DI4mAMc/1qH4wuZtH1abcMc/3DUnsXcxghi10yzLVHDE/9sjgYam/PsNQvi4Oh9nYMU+3ZLB7zn0AZGRmJ5z3vec/4uzVr1nT+QB6J2tsxLLV36V8wHHSkLA7LPj2SYa5f7UtPFgdnmOtX+9LrWhZdn3bTMNc/DLV3LYcRsthFw1x7xHDUL4uDo/b2DEP9sjg4am/HsNSeyWJ3ljkBAAAAAAA6wgIKAAAAAABAzbJcQJmYmIjrr78+JiYm2i5l0dTejmGuvauGfZ8Oc/1q56mGfZ8Oc/1q56mGeZ8Oc+0Rw13/MNfeVcO8T9XenmGvv4uGeZ+qvT3DXn8XDfM+VXs7hrn2Iznmv0QeAAAAAABgsZblJ1AAAAAAAAAWYgEFAAAAAACgxgIKAAAAAABAjQUUAAAAAACAmmW3gHLzzTfHT/zET8TKlStjy5Yt8fWvf73tklI+8IEPRK/XO+zn3HPPbbusZ3TvvffGlVdeGRs2bIherxef+9znDvt9VVXx/ve/P0477bRYtWpVbN26Nb773e+2U2xNU+1vetObnnYcLr/88naKHXLDmMVhymGELJIji0tPFsmQxaU1zDmMkMVBGcYcRsjioMjh4Mji0pNFMmRx6cnicFhWCyi33XZbXHfddXH99dfHn/3Zn8XmzZvjsssuix/84Adtl5Zy3nnnxSOPPHLo5ytf+UrbJT2jffv2xebNm+Pmm29+xt9/+MMfjo997GPxqU99Ku677744/vjj47LLLosDBw4MuNKna6o9IuLyyy8/7DjceuutA6zw2DDMWRyWHEbIIs1kcTBkkSayuPSGOYcRsjgIw5zDCFkcBDkcDFkcDFmkiSwOhiwOiWoZueSSS6q3ve1th/5/fn6+2rBhQ3XjjTe2WFXO9ddfX23evLntMhYtIqrbb7/90P/3+/1q/fr11Uc+8pFDf/bEE09UExMT1a233tpChUdWr72qquqaa66pXvOa17RSz7FkWLM4rDmsKlnkmcni4Mkiz0QWB2uYc1hVsrhUhjWHVSWLbZDDpSOLgyeLPBNZHDxZ7K5l8wmUmZmZ+OY3vxlbt2499GcjIyOxdevW+NrXvtZiZXnf/e53Y8OGDXHWWWfFz/3cz8X3v//9tktatO3bt8fOnTsPOw5r166NLVu2DM1xuPvuu+PUU0+NTZs2xVvf+tbYvXt32yUNlWHP4rGQwwhZRBa7QhaRxfYdCzmMkMWjMew5jJDFrpDDoyOL3SCLyGI3yGJ3LJsFlMceeyzm5+dj3bp1h/35unXrYufOnS1Vlbdly5a45ZZb4o477ohPfvKTsX379nj5y18eU1NTbZe2KAf39bAeh8svvzw+85nPxLZt2+JDH/pQ3HPPPXHFFVfE/Px826UNjWHO4rGSwwhZRBa7QhaRxfYNew4jZPFoDXMOI2SxK+Tw6MliN8gistgNstgdY20XQM4VV1xx6L8vvPDC2LJlS5xxxhnx2c9+Nq699toWK1teXv/61x/67wsuuCAuvPDC+Mmf/Mm4++6749JLL22xMgZBDrtDFpc3WewOWVzeZLE7ZHF5k8VukENksRtkEVnshmMpi8vmEygnn3xyjI6Oxq5duw778127dsX69etbqurZO/HEE+Occ86JBx54oO1SFuXgvj5WjsNZZ50VJ5988tAdhzYdS1kc1hxGyCKy2BWyiCy271jLYYQsLtaxlMMIWewKOVw8WewGWUQWu0EWu2PZLKCMj4/HRRddFNu2bTv0Z/1+P7Zt2xYvfelLW6zs2dm7d288+OCDcdppp7VdyqKceeaZsX79+sOOw+TkZNx3331DeRweeuih2L1799AdhzYdS1kc1hxGyCKy2BWyiCy271jLYYQsLtaxlMMIWewKOVw8WewGWUQWu0EWu2NZPcLruuuui2uuuSYuvvjiuOSSS+Kmm26Kffv2xZvf/Oa2S2v0rne9K6688so444wz4uGHH47rr78+RkdH4w1veEPbpT3N3r17D1tN3L59e9x///1x0kknxemnnx5vf/vb44Mf/GA8//nPjzPPPDPe9773xYYNG+Kqq65qr+j/bqHaTzrppLjhhhvi6quvjvXr18eDDz4Y73nPe+Lss8+Oyy67rMWqh8+wZnGYchghizSTxcGQRZrI4tIb5hxGyOIgDGsOI2RxUORwMGRxMGSRJrI4GLI4JKpl5uMf/3h1+umnV+Pj49Ull1xS/emf/mnbJaW87nWvq0477bRqfHy8eu5zn1u97nWvqx544IG2y3pGd911VxURT/u55pprqqqqqn6/X73vfe+r1q1bV01MTFSXXnpp9Z3vfKfdov+7hWp/8sknq1e/+tXVKaecUq1YsaI644wzqre85S3Vzp072y57KA1jFocph1Uli+TI4tKTRTJkcWkNcw6rShYHZRhzWFWyOChyODiyuPRkkQxZXHqyOBx6VVVVR7MAAwAAAAAAcKxZNt+BAgAAAAAAkGUBBQAAAAAAoMYCCgAAAAAAQI0FFAAAAAAAgBoLKAAAAAAAADUWUAAAAAAAAGosoAAAAAAAANRYQAEAAAAAAKixgAIAAAAAAFBjAQUAAAAAAKDGAgpFPfroo7F+/fr4zd/8zUN/9tWvfjXGx8dj27ZtLVYGy4ssQvvkELpBFqEbZBG6QRahG2RxePSqqqraLoJjy5/8yZ/EVVddFV/96ldj06ZN8aIXvShe85rXxEc/+tG2S4NlRRahfXII3SCL0A2yCN0gi9ANsjgcLKCwJN72trfFnXfeGRdffHF861vfiv/3//1/Y2Jiou2yYNmRRWifHEI3yCJ0gyxCN8gidIMsdp8FFJbE/v374/zzz48dO3bEN7/5zbjgggvaLgmWJVmE9skhdIMsQjfIInSDLEI3yGL3+Q4UlsSDDz4YDz/8cPT7/fjbv/3btsuBZUsWoX1yCN0gi9ANsgjdIIvQDbLYfT6BQnEzMzNxySWXxIte9KLYtGlT3HTTTfGtb30rTj311LZLg2VFFqF9cgjdIIvQDbII3SCL0A2yOBwsoFDcu9/97vijP/qj+Iu/+Is44YQT4hWveEWsXbs2/viP/7jt0mBZkUVonxxCN8gidIMsQjfIInSDLA4Hj/CiqLvvvjtuuumm+P3f//1Ys2ZNjIyMxO///u/Hl7/85fjkJz/ZdnmwbMgitE8OoRtkEbpBFqEbZBG6QRaHh0+gAAAAAAAA1PgECgAAAAAAQI0FFAAAAAAAgBoLKAAAAAAAADUWUAAAAAAAAGosoAAAAAAAANRYQAEAAAAAAKixgAIAAAAAAFBjAQUAAAAAAKDGAgoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUWEABAAAAAACosYACAAAAAABQYwEFAAAAAACgxgIKAAAAAABAjQUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUGMBBQAAAAAAoMYCCgAAAAAAQI0FFAAAAAAAgBoLKAAAAAAAADUWUAAAAAAAAGosoAAAAAAAANRYQAEAAAAAAKixgAIAAAAAAFBjAQUAAAAAAKDGAgoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUWEABAAAAAACosYACAAAAAABQYwEFAAAAAACgxgIKAAAAAABAjQUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUGMBBQAAAAAAoMYCCgAAAAAAQI0FFAAAAAAAgBoLKAAAAAAAADUWUAAAAAAAAGosoAAAAAAAANRYQAEAAAAAAKixgAIAAAAAAFBjAQUAAAAAAKDGAgoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUWEABAAAAAACosYACAAAAAABQYwEFAAAAAACgxgIKAAAAAABAjQUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUGMBBQAAAAAAoMYCCgAAAAAAQI0FFAAAAAAAgBoLKAAAAAAAADUWUAAAAAAAAGosoAAAAAAAANRYQAEAAAAAAKixgAIAAAAAAFBjAQUAAAAAAKDGAgoAAAAAAECNBRQAAAAAAIAaCygAAAAAAAA1FlAAAAAAAABqLKAAAAAAAADUWEABAAAAAACosYACAAAAAABQYwEFAAAAAACgxgIKAAAAAABAjQUUAAAAAACAGgsoAAAAAAAANRZQAAAAAAAAaiygAAAAAAAA1FhAAQAAAAAAqLGAAgAAAAAAUDPWdgFLrd/vx8MPPxyrV6+OXq/Xdjmw5KqqiqmpqdiwYUOMjHRnjVQWWW5kEbqhi1mUQ5abLuYwQhZZfmQRukEWoRvSWayGwCc+8YnqjDPOqCYmJqpLLrmkuu+++9J/d8eOHVVE+PGz7H527Nghi378dOBHFv346cZPl7Ioh36W689S5FAW/fhZ/E+X5kRZ9LOcf2TRj59u/DRlsfOfQLntttviuuuui0996lOxZcuWuOmmm+Kyyy6L73znO3Hqqac2/v3Vq1dHRMSOHTtizZo1S10utG5ycjI2btx4aOyXIouwOLII3dDFLMohy81S5TBCFmExujgnRsgiy48sQjdks9irqqoaUE3PypYtW+IlL3lJfOITn4iIH32cbOPGjfGrv/qr8Wu/9muNf39ycjLWrl0be/bsEX6WhaUa87IIiyOL0A1dzKIcstws5ZiXRcjr4py4lHVBV8kidEN2zHfnQXvPYGZmJr75zW/G1q1bD/3ZyMhIbN26Nb72ta8949+Znp6OycnJw36AoyOL0A2yCN2w2CzKISwNWYT2uT6FbpBFWDqdXkB57LHHYn5+PtatW3fYn69bty527tz5jH/nxhtvjLVr1x762bhx4yBKhWOaLEI3yCJ0w2KzKIewNGQR2uf6FLpBFmHpdHoB5dl473vfG3v27Dn0s2PHjrZLgmVJFqEbZBHaJ4fQDbII3SCL0A2yCDmd/hL5k08+OUZHR2PXrl2H/fmuXbti/fr1z/h3JiYmYmJiYhDlwbIhi9ANsgjdsNgsyiEsDVmE9rk+hW6QRVg6nf4Eyvj4eFx00UWxbdu2Q3/W7/dj27Zt8dKXvrTFymB5kUXoBlmEbpBF6AZZhPbJIXSDLMLS6fQnUCIirrvuurjmmmvi4osvjksuuSRuuumm2LdvX7z5zW9eVD9zc3MxNzd3xN+PjOTWknq9XmObqqpSfWXaZfta6LUdNDs7m+prZmamyPYicvsru+8z+v1+ql12v2ZkXmOmzf+/vXsNkqO67z7+77nt6rYr64JWS4QsGZAsLuKxHTZggxGSQXKsAuI4IFNEtrFT5eKNLVNUKJtbBYfHJBVsJ4qJ/VSMnRckfgJSUkmMAyoLTDCibAcHxxUHgRzEZYVYo93Z6+zM9POCZxdto53+jXWm+/TO91OlKqQ9nD5z+vzO6e6zM2PmZkyUy2XpWM1ylcWxsTErFouz/rxQ0KYlZdwk2e9TarVabBklY2q5dsii2vfq+XYl7jX6nsXBwcGGfVsqlaR6lMy6HFsus6jmR8micjwzt+uPSy6zqOQ/yWsln7P4q1/9quH1mZpDpVw+n5fb5YoyFtTsKHlV61LalcY6plDb5bLvXbS/VTk0c5PFgYGBhnN9o2vXZsu5vNZVKefQ5dhKY5wq5dK4V3T5GpW64q6HfV4TzeLXRXUt8zWLijSeJynl0livXWbR5Tyo1JX1LB47dkzuj0aUnKlZdHktm/T1myrpZ1Mus5jG9a4iLotDQ0NSPd5voFx99dV29OhRu/XWW62/v9/OO+88e+ihh97ypUgAWossAn4gi4AfyCLgB7IIpI8cAn4gi0BrBKGvvwrpyNDQkHV3d9vAwIB1dXXNWo53oLyJ33pvjo/vQDnjjDNscHCw4ZhP2lQW+/v7G7aLd6A0V64dspjld6CsW7fO2yy+8MILDdvFO1DexDtQ9DJmfr4DZcOGDV5lcSqHhw4dskWLFs1ajnegvIl3oLwhy+9AOfvss73KodmbWXz++ecbZpF3oDRXjnegNHfMpN+B4tuaaKavi7wDpblyvAOlubqSfgeKz89t/ud//sdJu3gHSnN4B8obkn4Hypo1a2Kz6PV3oAAAAAAAAAAAAKSBDRQAAAAAAAAAAIAINlAAAAAAAAAAAAAi2EABAAAAAAAAAACIYAMFAAAAAAAAAAAggg0UAAAAAAAAAACACDZQAAAAAAAAAAAAIgppNyApYRhaGIYNf+7yWK7K1et1qS6lnFpXrVZzUsbMLAgCqZwr6mtUuBwTaj+4GBPValU6VjvwNddp8LVdLiV9vuOy6HI+aoUgCBrOTUnP3z5T+iLr/aW0X82Yy7pcZDGXy+7vC6UxrlyeP5eU85hGu5S5Xj2PSrl8Pi/V5fI+Q7nujzteoeD3bWfcvaKqHdYLha+vMY31QDmm2i4ls3HjWJ1Dsi7LWXR5jaTW5fJ5knJMl+uiyuU1gu/3eUlweQ59zaLKZRaTfk6cxrVz0v0VR+3P7N5RAgAAAAAAAAAAtAgbKAAAAAAAAAAAABFsoAAAAAAAAAAAAESwgQIAAAAAAAAAABDBBgoAAAAAAAAAAEAEGygAAAAAAAAAAAARbKAAAAAAAAAAAABEsIECAAAAAAAAAAAQUUi7AUmp1WpWq9Vm/XkYhlI9QRC4alLD9kyp1+vO6lLl8/nYMmp/Ke1X264cU22XUk5tl/Ia1XGTy8XvacbVpY6ZtNTr9YZtTKP9SY8HlZJFlcv5Rukvl3NXtVqV6nKZRaVcXF5dzsutELcuqu1X5i2XufB1XVTHlst2uVxjlZypfZ/0PJ7lLFYqFatUKrP+XF0HXI5RpZzL60CVi3k5LS5z6PJa12VdcedHPVZa4rKojq1CIf72Oo2+cDkeXEo61y7vO9O4tnGRRZfPM1qhWq02nAvV9rsc8y7XxaS5bJfLZxpprGWKNK6VfBWGYcPX4LKv2oHLMa9Keo11eX/gcty46lM/7zIAAAAAAAAAAABSxAYKAAAAAAAAAABABBsoAAAAAAAAAAAAEWygAAAAAAAAAAAARLCBAgAAAAAAAAAAEMEGCgAAAAAAAAAAQAQbKAAAAAAAAAAAABFsoAAAAAAAAAAAAESwgQIAAAAAAAAAABBRSLsBSanX61av10+6nlzO3Z5TGIaxZWq1mlSXUk45npn2GovFolRXtVp1UsbMnJy/KWpfKJT+CoIgsbpcjtFWiMuiep7VPlUox1TbpZRzmUW1H5RyLrPocu5S61K47K+48+N7FsMwdJJFpZzaF0o21HYlPc+7pI55l9cRSv59zWJcGZfrhWuu1kRlLKiZSLoulYt5uRku266ex6TXRJfy+XzaTWiprOcn6Sy6rMvleqFyeW/tckwofF7zFEEQNHwNaby+pM9hGnOEwmUWfZ1Tk8xi1rPqK1/HVtb5ek3v4vmB/LxWKgUAAAAAAAAAANBG2EABAAAAAAAAAACIYAMFAAAAAAAAAAAggg0UAAAAAAAAAACACDZQAAAAAAAAAAAAIthAAQAAAAAAAAAAiGADBQAAAAAAAAAAIIINFAAAAAAAAAAAgIhC2g3ImjAME61LPV6tVnNSxswsn8/HlgmCQKpLLaeo1+uxZVyeH7XtuVz8PqTLupKoI03qOVTGg9rvLrOY9Dh12a5qtSrVNTk56eR4Zlr71TGtlFPrUsZOXF2+ZzEIgoZtdDl/q+PUZRZdHU8t53K9rlQqUl1KFtVcu5xTXa6LSrm4Mi7HsmvFYtGKxeKsP1euyVxLOocq5Zjq2qPkUMmXWk7NoXqtrnCRnWbLZVk+n2+YNzWLSl+p+XFZl0tJXze7vD5VM5Z0Fl3WFdf3aYwZl9phPlK5nCOUci7zo9alruuuML7eVKvVGs6/hYL2ONnlmpHG876kJb3Gunxu4ytX94peP925/fbbLQiCGX/Wr1+fdrOAtkMWAT+QRcAPZBHwA1kE/EAWgfSRQ6B1vH8HyllnnWWPPPLI9N/VXU4AbpFFwA9kEfADWQT8QBYBP5BFIH3kEGgN75NUKBSsp6cn7WYAbY8sAn4gi4AfyCLgB7II+IEsAukjh0BreP0RXmZmzz77rPX29tratWvt2muvtRdeeCHtJgFtiSwCfiCLgB/IIuAHsgj4gSwC6SOHQGt4/Q6Uvr4+u++++2zdunX2yiuv2B133GEXXXSR/exnP7NFixad8P+ZmJiwiYmJ6b8PDQ0l1VxgziKLgB/IIuCHZrNIDoHWIIuAH8gikD7uFYHW8XoDZdu2bdP/fe6551pfX5+tXr3avvOd79j1119/wv/nrrvusjvuuCOpJgJtgSwCfiCLgB+azSI5BFqDLAJ+IItA+rhXBFrH+4/wOt7ixYvtzDPPtIMHD85a5uabb7bBwcHpP4cPH06whUB7IIuAH8gi4Ie4LJJDIBlkEfADWQTSx70i4E6mNlCGh4ftueees5UrV85apqOjw7q6umb8AeAWWQT8QBYBP8RlkRwCySCLgB/IIpA+7hUBd7zeQLnxxhvt0UcftV/+8pf2xBNP2FVXXWX5fN527NiRdtOAtkIWAT+QRcAPZBHwA1kE/EAWgfSRQ6B1vP4OlBdffNF27NhhAwMDtnz5cnvf+95nTz75pC1fvrzpusIwtDAMZ/15rVY7mabOUK/XpXLKMScnJ6W6qtVqbBm1XcoxG/Xl8ZR2Hf+FVY1UKhWpnKJYLMaW6ejokOoKgiC2TD6fl+pSy7W6jiiXWYyjji0lPy7rUvOjlFPnG6WckjEzs/Hx8dgyo6OjUl1KZpVcmGk56+zslOoqlUqxZXI57fcGlBzF1VUouF9iXWYxn887mS+UMa9m0WVdSjmXa5mSMTOzsbGx2DLlclmqy2UWlfwoZcy0zKp1KTmKG8c+Z7FQKDS8JlHnLIW69qi5cFWXy7VavaZUcjg8POysLvU1KnOymh1lfVWvdZV2xZVpxfWpmbssFovFhn2rtl+Zc9NYx1wdz0xbq9V7WJfXp0pd6nWzy/u7efPmxZZxuSbGrRsu15Xjucpi3PWp2n7lHKr3d+q1lCsu5wh1zCvPWtRrXaUudY5QXqN6nafkTHlOZNa6Ne1kubxXDIKg4dhXc+FyLXO55rmktMvl81g1P0o5dY5QXqM6PyuZVXOtHDOu7eq48noD5W//9m/TbgIAI4uAL8gi4AeyCPiBLAJ+IItA+sgh0Dpef4QXAAAAAAAAAABAGthAAQAAAAAAAAAAiGADBQAAAAAAAAAAIIINFAAAAAAAAAAAgAg2UAAAAAAAAAAAACLYQAEAAAAAAAAAAIhgAwUAAAAAAAAAACCikHYDklKv161er8/681zO3V5So+Mcr1qtOiljZhaGYWwZl+2amJiQ6lLKjY2NSXWNj4/HlgmCQKpr3rx5sWXmz5/vrC61XWq5RtTznJYwDBuOV2Usm2l95XLMq3W5zKIy5svlslTX0NBQbJnR0VGpLiXXhYK2vCxatCi2TK1Wk+pKeuzHHU+dv9PiKosux7xyrtV2KdR2KevUsWPHpLqUcoODg1Jdk5OTsWXULC5cuDC2jLLembk9j0q5uDI+ZzEIAidrv4t+muLbXDpFWXvUNfH111+PLaOsm2ba/JDP56W6SqVSbJmOjg6pLiWvat+7uNb1/fo0n883PE8u7xV9zaLaLmVOVe/vhoeHY8uouVaOqa4Hyrysrq/KWq2swWZa/uPapV5XpyWXy3mXRZdrrDK2XM4Ryvgz0+47R0ZGpLqULFYqFaku5TWqWVywYEFsGfUZULFYjC0Td67bJYsux7zSZy6uq5uljFN1/VEyq+TVTLt2VutSzpGaxc7OTidlzLRxGHd+1HmybTZQAAAAACBN9TC0g4NmgxWz7pLZ6d1muRRu9gEAAABo2EABAAAAgBb796OhfedgaMeO+8XbxSWz3zvd7H8tZxMFAAAA8BHfgQIAAAAALfTvR0P7+s9nbp6YmR2rmH3956H9+1F3H08IAAAAwB02UAAAAACgRerhG+88aeT/Phda3eF3PAEAAABwgw0UAAAAAGiRg4P2lneeRL0+Yfbfr/v9ResAAABAO2IDBQAAAABaZDBm82S63ERr2wEAAACgeWygAAAAAECLdJfEch2tbQcAAACA5rGBAgAAAAAtcnq32eKYTZS3dZid+TZuzQAAAADfcJUOAAAAAC2SCwL7vdODhmU+8o7AckHjMgAAAACSV0i7AUmp1+tWr8/+xYy5nLaXFAg3NmpdSrlisSjVFYahkzJmZtVqNbbM6OioVNfERPyHOU9OTkp11Wo1qZyiUon/MGrlXJtp/arWpYiry2U/tUJcFlVKn7o4zhQ11wqXWRwfH5fqUnKWz+elujo7O2PLuOwv9TUqY1/te6VcodB4CfU9i3HUvlJep9oXLvtMGYPqHKHkR1nvzLTXuHDhQqku5TWqWYwbz2Z6fynXCOr4UmR5Xczn8w3nXvX8Kf2p9oOy9qjnL+kcquuFcg2xaNEiqS6lXBAE9oFlZl1d4/bNnw7bwNibr3npvJx9fONC6zu1U+pX5RrWzGxsbEwqp1DOY1yfKuMqTYVCoeE86PK6Jo0suqSMQZfnW7nuNDMrleI/K89l36uvUbk+cDm+4mQ9i+r9ist7RWXcqHW5fC7g8hpc4fLZlDrmlbVf7XuXWXTxGtXnYGlxtS66HPNKv7t8BqRy+TzWZX6Ucso9oJm2dqjzjctnU0q5uDGhrotts4ECAAAAAGnpO7XT3tPbYf/12qS9Pl63t3XmbP2youV55wkAAADgLTZQAAAAACAB+SCws5aL3yoPAAAAIHV8BwoAAAAAAAAAAEAEGygAAAAAAAAAAAARbKAAAAAAAAAAAABEsIECAAAAAAAAAAAQwQYKAAAAAAAAAABABBsoAAAAAAAAAAAAEYW0G5CUIAgsCIJZfx6GYYKteUMuF79/pZQx09o/OTkp1VWtVmPLjI6OOqurUNCG4bx582LLNDrHzVLabmZWqVRiy6ivUTnf+Xy+4c/r9bp0rLTkcrmGr1PNovI61b5Qxo2aRYU6tmq1WmyZiYkJqS6lL+bPny/VpYxn9Twqr1Gdu5Ry6nlUXmNcFtNYV5oRl0Xl3Kjl1LoU6nyq5DqNcaqMwYULF0p1dXZ2xpZR50Gl/SMjI1JdyrqoUs53sVhs+HOf18V8Pt9wLnGZQ3WMKv3l8vpUfY1K+9VzrYwrJV9mZh0dHVI5xfj4eGyZcrks1aVcq4+NjUl1lUql2DJxOXS5DrRCXBZVLtdE9XrRFTU/SrvU9TVu3JjpWVTmJfU1KtfXw8PDUl1KrpUyZm7uFZMeV80qFovSuEiSMp7VseWyLpf3w8rYUrOorBnqPKhkUc2Py3tr5T4j7loj61l0+ezN5T2Zy+dJal1KObUuJYsu74fVupTrcHVMu3x+7eI8qu3mHSgAAAAAAAAAAAARbKAAAAAAAAAAAABEsIECAAAAAAAAAAAQwQYKAAAAAAAAAABABBsoAAAAAAAAAAAAEWygAAAAAAAAAAAARLCBAgAAAAAAAAAAENH0BsrOnTvtsccea0VbADThs5/9rB04cCDtZgBtb9euXWQR8MDnPvc5sgh44MYbb7Snnnoq7WYAbY8sAukjh8Dc0PQGyuDgoG3ZssXOOOMM++M//mN76aWXWtEuADHK5bJ99KMftYsvvtj+4i/+wvr7+9NuEtCWyuWyXXvttfb+97+fLAIpKpfLdt1119mmTZts9+7dZBFICVkE/FAul+33f//37dJLL7W//Mu/JItACsghMDcUmv0f9u7da0ePHrW/+Zu/sW9961t222232ZYtW+z666+3K664worFYivaedKCILAgCGb9eRiGUj31et1JGbVcozY3S60rl4vfV1PPc2dnZ2yZRYsWSXXNmzcvtozSdjOzarUaW2ZyclKqSz3filqtFltmaqzee++9NjAwYHv27LEHH3zQ/uzP/sze+9732vbt2521pxXCMGyYN7U/lb5S61LGjTq2lJy5zGJHR4dUl1Kuq6tLqkvJojqnTkxMxJYZGxuT6lIyq57HZub6v/qrv5rO4gMPPGD33HNPJrJYr9cbvk5lnjTTzqE6HgqF+MsSl/lR61LKlUolqS6lXBpZVHKmzLvqMV1e30wd7/gsPvjgg/blL3/Z+yy6yuH4+HhsGbWufD4fW0bJqlqXulYrY0ad45XrWOUa1sxtDhXqmqj0l9r3SvuPLzN1jbp371578MEH7Stf+Yr19fWZmX597Ru1r5TXp/aB0u9KxszSuadUuLzvVOYll1lUrn/MtPnZZRaPPz9f//rXZ6yLWciij89tFL5mzOUx1TXWZRZdrmVKFtV2KeWm+usb3/jGjHvFr3zlK95fn5q90f5G59zlOHX53EbV7LXNyZZr1TzfiJJFl8+51P5q5rmnC3HXSuq11K81+pYvX267du2yn/70p3bgwAE7/fTT7brrrrPe3l777Gc/a88++6xUz2OPPWbbt2+33t5eC4LA9u7dO+PnYRjarbfeaitXrrR58+bZli1b5LqBdrB06VL75Cc/af/yL/9iDz74oK1evdo+//nPm5nZzTffTBaBhExl8bvf/a7t2bOHLAIpYV0E/LB06VK7/vrr7Z//+Z/tgQcesFWrVpmZ2bp16+T7RXIInLzoukgWgeRxrwhk30lt373yyiv28MMP28MPP2z5fN4++MEP2jPPPGMbNmywe+65J/b/HxkZsY0bN9ru3btP+PO7777bvvrVr9q9995rBw4csAULFtjll18u7RwD7eTVV1+1xx9/3B5//PHpHeT//M//JItAwsgi4AeyCPjh1VdftX/7t3+zJ5980szMLrvsMvl+kRwC7kyti2QRSA/Xp0B2BWGT74uZnJy0f/zHf7RvfvOb9q//+q927rnn2ic/+Un76Ec/Ov2RE3v27LFPfOIT9vrrr+sNCQLbs2ePXXnllWb2xs5pb2+vfe5zn7Mbb7zRzN74/pUVK1bYfffdZ9dcc41U79DQkHV3d9uLL74ofyRGIy7fmpX0R3ipk+bQ0FBsmWPHjkl1KW+F4iO83tTMW+wmJyftkUcesb//+7+3xx9/3NatW2dXX321XXrppfbe977XBgcHbd++fd5l8YUXXmiYRV8/wkv9uBIls+pb/pWcqVlUtMNHeKkfA6G8xqmPRTs+iz/4wQ9s/fr101m88MILM5tFdQ5M+iO81I+tU3JdqVSkugYHB52UUXV3d0vlkv4IL/U1KnWpWVy4cGFsmQULFphZttbFqRy+9NJLTnKY9Ed4qTlU6lJf48jISGyZ4eFhqS6lXUq+1HIuc6iO3XK5HFtGvc9YvHhxbJnjszo5OWn79u2bkcUrrrjCvvjFL9rg4KB1dXU1fb/Y6jXxyJEjTq5PlXXF14/wcvka1fVVoX5EpsuPDVLmVOWe2cxtFqfWu0aOv7c+0broexaPHj3aMIsuP8JL/WhSlx8H5vJ5ksv74WY+kiqOy4/6Ue4zRkdHpbqUXKtZVD7mM+v3inFZTOMjvFxm0WV+kp4jXH68lcuPKFWfcyl9r17fuPiYsnK5bGefffb0ujjrsaQWHWflypVWr9dtx44d9tRTT9l55533ljKbNm2SLrQbOXTokPX399uWLVum/627u9v6+vrshz/84azhn5iYmHHS1AsbIGt+67d+y+r1um3fvt327NljGzZsMLOZF+lkEWi9vr6+6Szu3buXLAIp8XldJIdoJxdccMF0Fh988EHbsGGDlctl++IXvzhd5mSzyJoIxDvRukgWgWRxrwjMDU1voNxzzz32kY98pOGO6+LFi+3QoUMn1bD+/n4zM1uxYsWMf1+xYsX0z07krrvusjvuuOOkjg1kwRe+8AX74Ac/2PC3QMki0Hpf+MIX7Ld/+7fJIpAyn9dFcoh28vnPf77lWWRNBOIlsS6SRaAx7hWBuaHp70C57rrrpLerpeXmm2+2wcHB6T+HDx9Ou0lAS1x11VXyR2ikgSyiXfzO7/wOWQQ84PO6SA7RTsgi4AeyCKSPe0VgbjipL5FvpZ6eHjMzO3LkyIx/P3LkyPTPTqSjo8O6urpm/AHw6yOLgB/IIuCHXyeL5BBwizUR8ANZBPxAFoHW8nYDZc2aNdbT02P79u2b/rehoSE7cOCAXXDBBSm2DGgvZBHwA1kE/EAWgfSRQ8APZBHwA1kEWqvp70BxaXh42A4ePDj990OHDtnTTz9tS5YssdNOO80+85nP2J133mlnnHGGrVmzxm655Rbr7e21K6+8suljFYtFKxaLs/68Xq9L9UxOTsaWUesKwzC2TBAEUl3KMWu1mlSX0i71LYjz58+PLdPd3S3VtXDhwtgy+Xxeqkt5jWp/VavV2DLKuFHrimtXo3E+mySzWCqVrFQqzfpzpQ9cU8ZNLuduv1mtq1CIn6KVjJlp40L9bRPlmOprVOYuNT9KOTXXirj5OetZdLn+KHOumdZnv06/zkbJmJlJH12qrv1KNhYsWCDVpbRLzeK8efOclDEzGx8fl8oplPk57jyq5/l4SWUx7vrUZXbUTDeaF5opox5THaPK/H18Dmv10J7pH7WB0aotnV+wc3rmWz4XyO1Sr3WVvjj+eLV6aD85PGSvjVRs2YKSvWtV13S7XF5rKO2K9tfPj07Yr8ZqtmRe3jYs75hul5L9LOfQ7I2+d9H/Sh1qXyjjVK1LaZe6jqlziUI5pnp/p/SF2nalnNpfCnWuV+alrGcxCIKG/e9y/Kn97nJudjm2XD6HUNZYte+VzCY9j6jHTPKexfd7xSSzqGbM5XWlMk7VsaWUU59zKVlUx6nL/lKo7VJeo8vzGFeXui6muoHyox/9yDZt2jT99127dpmZ2c6dO+2+++6zm266yUZGRuwP/uAP7NixY/a+973PHnroIa+/gwXIIrII+IEsAn4gi9n22KEh2/3EETs68ubN6vIFBbvhwhV28Zr0Pppi3y8G7O5Hnrcj5cr0v61YVLKbtqy1zeuWptauJw6P2jd+fMwGRt+8oV06P2+fevdiu3CV9osarUAOAT+QRcAPZBFITxCqW0QZNTQ0ZN3d3XbkyJGGv13t8h0oLt/p4fK3uMfGxqS6hoeHY8uov13KO1DekOQ7UMrlsm3YsMEGBwe9+vzKqSz29/c3bJe6M++ir6Yo40YdW4pKpRJfyN7oszijo6NSXbwD5Q1JvgOlXC7bO9/5zsxmUe13ZT1w+dtc6m++K9TXODIyEltGzaKv70BR5lT1OsK3d6CUy2U766yzvMriVA5fffXVhm1S14uJiYnYMur6mvQ7UNR5WcnY6OioPXZoyG5/+KVZy9z+gVPt/Wvjrz3Vhw1KuSAIbN8vBuzGPf9l0dlwqof+9Kr1dtGaRbF1KfORWq5er9sTh0ftf/9gYNYyf3jRUtt8ZvzmTtxvxpfLZTv77LO9yqHZm1k8evSok3tFJbPqmPf1HSjKfKOUUY+p/pa2y3fiKdcHahaVe2uX70CJu073cU00ezOLr732mpN2ufyEDpd4B0pzdSntV69PlXlJzaJyHaSsiz7fK8ZlMY13gynlXNbVDu9AUetS2q/et/j2DpRyuWzr16+PzaK334ECAAAAAKpaPbTdTxxpWGb3E0esVk/298dq9dDufuT5t2yemNn0v939yPOptOsbPz7WsMz/+fGxxNsFAAAA+IQNFAAAAACZ90z/6IyP7TqRoyNVe6Zfe8eYKz85PDTjY7uiQjM7Uq7Y0y+Vk2uUmf386MSMj+06kddGa/azI9pv9wIAAABzERsoAAAAADJvYFT7eAS1nCuvjWgfafDaiPZRK678akz7+Jqk+wsAAADwCRsoAAAAADJv6Xzt+yDUcq4sW6B9Z8yyBdp3PbiyZJ72/W5J9xcAAADgEzZQAAAAAGTeOT3zbfmCxg/7ly8o2Dk9jb9k2bV3reqyFYtKNttXeQZmtmJRyc47Nf5L5F3asLzDls5vvImybH7ezl4xL6EWAQAAAP5hAwUAAABA5uVzgd1w4YqGZW64cIXlc7NtZbRGPhfYTVvWmpm9ZRNl6u83bVmbSrs+9e7FDct88t2LE28XAAAA4BM2UAAAAADMCRev6bLbP3DqW96JsnxBwW7/wKl28ZquVNq1ed1S+9Or1tspi2Z+nNcpi0r2p1ett83rlqbSrgtXzbc/vGjpW96Jsmx+3v7woqV24apk360DAAAA+KZtPtA2DEMLw3DWn9frdbkeV3K5+P0rpYyZ1i617dVq/BdF1mral04q8nnt85cLhfjhqtYVBPG/SaeOiWIx/vOqlTJmWt9XKo2/iDTu52nL5XINx7U65pVzqI4HpZxal5Iz9TUq5VyOebVdyjGVvKpc5kedu5RyccdTz01a8vl8wza6nAOV8WemjRuXY0tdF5XXWCpp33GgHFPtLyWzan8p41WdI5T+UrPo4rpLbXca4tZEdR5R+lwdCy5zqIxldbx3dHTElpkaVx9Yv9wuPXOZ/fTlYRsYrdrS+QXb2Ltw+p0U6vymUMbo1Hn8wDuX26XrltlPDg/a0eGKLV9Ysnet6p5ulzKPqJlQxs7UOnbZOxfa5nXL7Zn+0en+Oqdn/nS7fM6QK3FZdNnvvl4HurwfVuuanJx0VpdSzuW9gTInqdQ1URkTcf3gcv5rhSAI5HUhrp44Lq/VXc6T6nyjvEa1LmVcqHUp49nFOZ6Sxr2Bcr7j+sHlM7WsU8eDy3GjcJkfl8dUnnuYaWPM5Wt0+SzP5bl2tS62zQYKAAAAgPaQzwX2rt9I9jtFFPlcYL+5enHazXiLfC6w83oXpN0MAAAAwDtz/9eJAAAAAAAAAAAAmsQGCgAAAAAAAAAAQAQbKAAAAAAAAAAAABFsoAAAAAAAAAAAAESwgQIAAAAAAAAAABDBBgoAAAAAAAAAAEAEGygAAAAAAAAAAAARhbQbkJQwDC0Mw4Y/V+tJUr1ed1ZXPp+XynV2diZ+TIXSF+rxlPMYBIFUl1LOZbtyucb7nnE/T1tcFlXq+Um6LpfHKxTip2iljKpWq0nlqtVqbBl1HCZ9HtV2KWM0rkzS60WzXGXR5Tyf5Syq/aDkTMmYmdnk5KRUTqH0hTpeXGZR6a+4fnDZT665yqHLtV8Zyy6vkdS2K+VcXm+p1+BKXl3eZ6jtcnl9qhxzYmKi4c8rlYp0rLQkeX2q5kcZ81nPosv8KHO9eq2rjHm1LgVZfJOrLLqU9P2KyznC5T2Zy/yo51ipy+UzM7XvlWPGzUlxWfWdy/sCl5I+nnpMl+1y+dzGZa5VLucuF/fW4+Pj0rH8ftIKAAAAAAAAAACQAjZQAAAAAAAAAAAAIthAAQAAAAAAAAAAiGADBQAAAAAAAAAAIIINFAAAAAAAAAAAgAg2UAAAAAAAAAAAACLYQAEAAAAAAAAAAIhgAwUAAAAAAAAAACCCDRQAAAAAAAAAAICIQtoNSEoYhhaG4aw/D4JAqqdQiO+yRsc5Xr1ed1aXUk5pu5nZvHnznNWVy8Xv0Sn9YGZWq9WcHM9MP98Kpf0uX+Pk5ORJ/Txt9Xpd7o9G8vl8bBk1P8p4cJlFlZKzUqkk1aWMC3XsTExMxJZRM6ZmVqHkp1qtSnUpfTE+Pn5SP0+bqywq51odDy7nZpdZVKhjWRlbSsbMtNeojnmX67VyTCWvZm6yODIyIh0rDa5y6HIudUkZoy7XanUOUY6pjlGlnHLNYua2XS5zqJSLm7d8zqFZfBZdjlNfJb1uqtQ50mX7lTGv5sflPb9yzEql0vDnY2Nj0rHSEvfcJo1xqhwzy9ew6jHVLCb9fMTFdVSzlGPGrYvq9X5a4tZFl9dcKpfPbXxdr11eO7vMosucuZxvXKyL6nMwP++2AAAAAAAAAAAAUsQGCgAAAAAAAAAAQAQbKAAAAAAAAAAAABFsoAAAAAAAAAAAAESwgQIAAAAAAAAAABDBBgoAAAAAAAAAAEAEGygAAAAAAAAAAAARbKAAAAAAAAAAAABEFNJugC9yOXd7SWEYOjumWle9Xo8tk8/npboKhfhh0dHRIdUVBEFsmWKxKNWltF85nkrpUzOzWq0WW6ZSqUh1TUxMxJYZGxs7qZ+nLQzDhuNaPYcuz7VCzaJSTp1vSqVSbBm1H5ScqXOE0i71NSrtVzJmpuVsfHxcqkspF5fXkZER6VhpcZVFl3Ozy1wrWXS5Xqv5Udc8V3Upa7pZ8lkcHR11Vtfk5KSTY6XBVQ4VWc+hQl17XF73K9k//ni1emhPvzRsAyOTtnRB0c47daHlc2/0uXLtWa1WpXa5XBPjMqYcz/c1sV6vy9f+PnGZH5dczjdqXS5zrVDXROX+Tq1LyWJcGd/vFavVqjzPnayk1zuz5MepSmmXy7an8dxGGVfq2FMyG5dFZW5IU6VSabi2pzHP+7pmuFyLXb5G9f7UFXUtU8qpferieaz6vDbV2fuxxx6z7du3W29vrwVBYHv37p3x84997GMWBMGMP1u3bk2nscAcRhYBP5BFwA9kEa3w/YOv21V//Yzd8MB/260PHbIbHvhvu+qvn7HvH3w97aZ5iRwCfiCLgB/IIpCeVDdQRkZGbOPGjbZ79+5Zy2zdutVeeeWV6T/3339/gi0E2gNZBPxAFgE/kEW49v2Dr9vN//S8vTo88zdSXx2etJv/6Xk2UU6AHAJ+IIuAH8gikJ5UP8Jr27Zttm3btoZlOjo6rKenJ6EWAe2JLAJ+IIuAH8giXKrVQ7tn/+GGZb68/7C97+1d0x/nBXII+IIsAn4gi0B6/PwAxuPs37/fTjnlFFu3bp19+tOftoGBgYblJyYmbGhoaMYfACePLAJ+IIuAH5rJIjlsb0+/NPyWd55EHRmetJ++PJxQi+YO1kTAD2QR8ANZBFrD6w2UrVu32re//W3bt2+ffelLX7JHH33Utm3b1vBLYu666y7r7u6e/rNq1aoEWwzMTWQR8ANZBPzQbBbJYXsbGIn/4mczs9fEcngDayLgB7II+IEsAq2T6kd4xbnmmmum//ucc86xc889197xjnfY/v37bfPmzSf8f26++WbbtWvX9N+HhoaYAICTRBYBP5BFwA/NZpEctrelC4pSuWViObyBNRHwA1kE/EAWgdbx+h0oUWvXrrVly5bZwYMHZy3T0dFhXV1dM/4AcIssAn4gi4Af4rJIDtvbeacutFMWNt4cWbGwaBt7FybUormJNRHwA1kE/EAWAXcytYHy4osv2sDAgK1cuTLtpgBtjSwCfiCLgB/IIhrJ5wL77CWNf5vzM5es4gvkTxI5BPxAFgE/kEXAnVQ/wmt4eHjGTuihQ4fs6aeftiVLltiSJUvsjjvusA9/+MPW09Njzz33nN100012+umn2+WXX55iq4G5hywCfiCLgB/IIlzbdPrb7K4PrbV79h+e8YXyKxYW7TOXrLJNp7/N6vV6ii30DzkE/EAWAT+QRSA9qW6g/OhHP7JNmzZN/33qc/d27txpX/va1+w//uM/7Fvf+pYdO3bMent77bLLLrM/+qM/so6ODudtCQLtN76UcmpdSQvDUCqXdPtzOe2NUC7bpfSFehNbqVRiy4yOjkp1jYyMxJaZmJg46TqiksxiGIYN+99lFl2OLTU/ajlXdXV2djo7ntr3ar8qGn2h3ZTJSe1LdeOyYfbGZ7oqxsbGYsvEtcv3LNZqtYb9r55npZzLXKvy+byz4yl1FYvadxcouXbZX+qcVK1WpXIKl+uiksW416jUEZVUFqvVasO+TyM7LseVQp1rCoX42xa1rlKpJJVTKP01dU257eyVdtmGHvvJ4SF7baRiyxaU7F2ruqbfeaJkRyljpq2J6jqlHDOuH9S1/HhJromVSqXh63SZMZfXp2nMEUr71TVRqcvlNbh6f6fkx2Vd6jqlrNVxfep7FsfGxhrO9y7vQ1xe67rMtcvXqFzDmmmZVetSsqHcA5pp68/4+LhUl3Ltqa6xLn7hwfcslsvlhj93OebVsaWUc1mXyyyqlHap17HKOFXvAZVsqGNayaw6R7iYb9Tcp7qBcskllzS80Pne976XYGuA9kUWAT+QRcAPZBGtks8F9puru9NuRiaQQ8APZBHwA1kE0pOp70ABAAAAAAAAAABIAhsoAAAAAAAAAAAAEWygAAAAAAAAAAAARLCBAgAAAAAAAAAAEMEGCgAAAAAAAAAAQAQbKAAAAAAAAAAAABFsoAAAAAAAAAAAAEQU0m5AUsIwtDAMZ/15rVaT6snl4veclDJmZkEQOCmjSqOupI/Z6BwfTznf1WpVqmt8fDy2zPDwsFTXsWPHTvp4IyMj0rHSUq/XrV6vz/pz9Ry6HA9qZpPmco5Ier5pdI6bLadmsVKpxJZR8mpmNjQ0FFtmYmKi4c9HR0elY6UlLovqOVSoGVPKuRynLqWx9itznHp94zKLSjklr2ZmY2NjsWXi2q7UkZZardbwHKnrmFJOHVdJ5zCNdaxQcHcL5DKHSnYmJyelulxe6yrl4vpePVZaqtVqw75Vs6jMpWlkUSnncq1W68rn87FlXN7fqdc2Ss7irgObqUvNtYu5Xu3PtIyPj1uxWDzpepJeF13mR12jkn42pdal9L06DpVsqNeUSmbVLCr9pcxvPhsbG2v4Glw+t1GzqPSpmh+lnFqX0i6Xz5zSuHZWzrfL5zZJXjfKzw1b3A4AAAAAAAAAAIDMYQMFAAAAAAAAAAAggg0UAAAAAAAAAACACDZQAAAAAAAAAAAAIthAAQAAAAAAAAAAiGADBQAAAAAAAAAAIIINFAAAAAAAAAAAgAg2UAAAAAAAAAAAACLYQAEAAAAAAAAAAIgopN2ApNTrdavX607qiZPLZXtfKgiC2DLqa1TqUsqYmYVhGFumVqtJdVUqldgyY2NjUl0jIyOxZQYHB6W6Xn/99dgyce0aHR2VjpWWWq0mn6dGlPGgji2lnHI8lct2qVlUyrnMYrValeoaHx+PLaNmUSmn1jU8PBxbJi5rvmexWq3a5OTkrD9Xc+pibZ2ijkFX1Pzk83lndSnl1LqUvlfWOzNtvKr5mZiYiC3TaOwdT5kj4uYbn7M4NjZmhcLsl+NqDpVyalZd5lCpq9Hrb7acWpeSabUflL53ufa4zKG6VqvlWl1HK5XL5YY/V7OovE6X15Qql1ns6OiILVMqlaS6lCyqlL5X1wMli8o9oJmWRRf3RlPiriHSGH/NiOt79fohyT41c3t/VywWpbqULCplzPT8K5RzpFzfmbm5J2vmmOq1knqOsqxcLjecL9QsurxXdHktqORaXaM6OzudlDHT2u/yGlW9V3T5rMVlFl2cR3VdzPaTfgAAAAAAAAAAgBZgAwUAAAAAAAAAACCCDRQAAAAAAAAAAIAINlAAAAAAAAAAAAAi2EABAAAAAAAAAACIYAMFAAAAAAAAAAAggg0UAAAAAAAAAACACDZQAAAAAAAAAAAAIgppNyApYRhaGIYnXU+9Xo8tMzk5KdVVq9WcHM/MpNcWBIFUVy4Xv6+Wz+elutRjKpR+nZiYkOoaHR11UkYtNzw8LNU1NDQUWyZu3IyPj0vHSku9Xm/4GtScKvlRyphpY0utS6Hmp1CIn6KVMs2UUyj9NTY2JtWlZEMd05VKJbaMmmtlLokbE+r8nZaxsbGG48JlFtV1UTmHLrNYKpWclVPrKhaLsWXUtVPpV3X9KZfLsWXUNVYZ+8q5NnNzreRzFsvlcsOsVatVqR6ln9S6lHJqppVrSjU7nZ2dsWXmz58v1aUcU82hMpaV6zszLYdqdpQ53OX4iusvn3NoZvarX/2qYd+6nLPU9VXpszTWxAULFsSWWbhwobNjqllU1ig1i0o5dUwo1NeolMvymmhmNjAw0PDaX73HUF6nskY1U06htEu9b1NypmZRWWNVSjZcXp+6XBddjom4Mr5n8dixYw2v99LIorJmuMyr+txm3rx5sWXULCp1qa9RuV5Xn48o51u9V0z62VrcGJTva6RSAAAAAAAAAAAAbYQNFAAAAAAAAAAAgAg2UAAAAAAAAAAAACLYQAEAAAAAAAAAAIhgAwUAAAAAAAAAACCCDRQAAAAAAAAAAIAINlAAAAAAAAAAAAAi2EABAAAAAAAAAACIKKTdgFYLw9DMzMrlspP66vW6fMw4tVrNyfHUYwZBINWVy8Xvq+Xzeakul6rVamyZiYkJqa6xsbHYMqOjo87qGhkZkepSjhk3bqbao47DpKhZdJkfpYyZ2eTkpLO6FGp+CoX4KVop00w5hdJfSi7MtGyMj49LdSntcpnFuOP5nsXh4WGpXBwlG8r8bWZWqVScHE9VKpWkcsViMdG61PXa5ZiPGw9m2vkx065d1Dlirq6Lag7V7LjMoVKXMvbMtGtKdVwp7VfnByWvag6V9iv5MtPyqvaXMt7V86j0fVx/TWXZpxyavdmeuL5X+0oZg2ofKHOpyzVRfY0uz6HLNdHXLCrU16iUi7vmz3oW1esHJT/KGtVMOYXSLpf3bSo1/67q8nVdVM+1MnfFlZl6bb5mMe4aXL1Hd5lFZWy5zKv63EZ9bqtQrrnU16jUpT73VM63+jw26Wdrcf2lrotzfgNl6mHtWWedlXJLgGSVy2Xr7u5OuxnTprK4cePGlFsCJMvXLPb19aXcEiBZPmVxKoebNm1KuSVAsnzKodmbWfzQhz6UckuAZPmaxd/93d9NuSVAsnzN4o4dO1JuCZCsuCwGoW/bnY7V63V7+eWXbdGiRdO/sTE0NGSrVq2yw4cPW1dXV8otbA5tT0eW2h6GoZXLZevt7XW6+36yolnMUp+eSJbbT9uTQRaTkeX20/Zk+JhFrk/9kuX2Z6XtPubQjCz6JMttN8tO+8liMmh7erLSfrKYDNqejiy1Xc3inH8HSi6Xs9/4jd844c+6urq8P5Gzoe3pyErbffoNhimzZTErfTqbLLeftrceWUxOlttP21vPtyxyfeqnLLc/C233LYdmZNFHWW67WTbaTxaTQ9vTk4X2k8Xk0PZ0ZKXtShb92eYEAAAAAAAAAADwBBsoAAAAAAAAAAAAEW25gdLR0WG33XabdXR0pN2UptH2dGS57b7Kep9muf20HcfLep9muf20HcfLcp9mue1m2W5/ltvuqyz3KW1PT9bb76Ms9yltT0/W2++jLPcpbU9Hlts+mzn/JfIAAAAAAAAAAADNast3oAAAAAAAAAAAADTCBgoAAAAAAAAAAEAEGygAAAAAAAAAAAARbKAAAAAAAAAAAABEtN0Gyu7du+3tb3+7dXZ2Wl9fnz311FNpN0ly++23WxAEM/6sX78+7Wad0GOPPWbbt2+33t5eC4LA9u7dO+PnYRjarbfeaitXrrR58+bZli1b7Nlnn02nsRFxbf/Yxz72lvOwdevWdBqbcVnMYpZyaEYWoSGLrUcWoSCLrZXlHJqRxaRkMYdmZDEp5DA5ZLH1yCIUZLH1yGI2tNUGyt/93d/Zrl277LbbbrOf/OQntnHjRrv88svt1VdfTbtpkrPOOsteeeWV6T+PP/542k06oZGREdu4caPt3r37hD+/++677atf/arde++9duDAAVuwYIFdfvnlNj4+nnBL3yqu7WZmW7dunXEe7r///gRbODdkOYtZyaEZWUQ8spgMsog4ZLH1spxDM7KYhCzn0IwsJoEcJoMsJoMsIg5ZTAZZzIiwjZx//vnhDTfcMP33Wq0W9vb2hnfddVeKrdLcdttt4caNG9NuRtPMLNyzZ8/03+v1etjT0xP+yZ/8yfS/HTt2LOzo6Ajvv//+FFo4u2jbwzAMd+7cGV5xxRWptGcuyWoWs5rDMCSLODGymDyyiBMhi8nKcg7DkCy2SlZzGIZkMQ3ksHXIYvLIIk6ELCaPLPqrbd6BUqlU7Mc//rFt2bJl+t9yuZxt2bLFfvjDH6bYMt2zzz5rvb29tnbtWrv22mvthRdeSLtJTTt06JD19/fPOA/d3d3W19eXmfOwf/9+O+WUU2zdunX26U9/2gYGBtJuUqZkPYtzIYdmZBFk0RdkEWQxfXMhh2Zk8WRkPYdmZNEX5PDkkEU/kEWQRT+QRX+0zQbKa6+9ZrVazVasWDHj31esWGH9/f0ptUrX19dn9913nz300EP2ta99zQ4dOmQXXXSRlcvltJvWlKm+zup52Lp1q33729+2ffv22Ze+9CV79NFHbdu2bVar1dJuWmZkOYtzJYdmZBFk0RdkEWQxfVnPoRlZPFlZzqEZWfQFOTx5ZNEPZBFk0Q9k0R+FtBsAzbZt26b/+9xzz7W+vj5bvXq1fec737Hrr78+xZa1l2uuuWb6v8855xw799xz7R3veIft37/fNm/enGLLkARy6A+y2N7Ioj/IYnsji/4gi+2NLPqBHIIs+oEsgiz6YS5lsW3egbJs2TLL5/N25MiRGf9+5MgR6+npSalVv77FixfbmWeeaQcPHky7KU2Z6uu5ch7Wrl1ry5Yty9x5SNNcymJWc2hGFkEWfUEWQRbTN9dyaEYWmzWXcmhGFn1BDptHFv1AFkEW/UAW/dE2GyilUsne/e532759+6b/rV6v2759++yCCy5IsWW/nuHhYXvuueds5cqVaTelKWvWrLGenp4Z52FoaMgOHDiQyfPw4osv2sDAQObOQ5rmUhazmkMzsgiy6AuyCLKYvrmWQzOy2Ky5lEMzsugLctg8sugHsgiy6Aey6I+2+givXbt22c6dO+0973mPnX/++fblL3/ZRkZG7OMf/3jaTYt144032vbt22316tX28ssv22233Wb5fN527NiRdtPeYnh4eMZu4qFDh+zpp5+2JUuW2GmnnWaf+cxn7M4777QzzjjD1qxZY7fccov19vbalVdemV6j/79GbV+yZIndcccd9uEPf9h6enrsueees5tuuslOP/10u/zyy1NsdfZkNYtZyqEZWUQ8spgMsog4ZLH1spxDM7KYhKzm0IwsJoUcJoMsJoMsIg5ZTAZZzIiwzfz5n/95eNppp4WlUik8//zzwyeffDLtJkmuvvrqcOXKlWGpVApPPfXU8Oqrrw4PHjyYdrNO6Pvf/35oZm/5s3PnzjAMw7Ber4e33HJLuGLFirCjoyPcvHlz+Itf/CLdRv9/jdo+OjoaXnbZZeHy5cvDYrEYrl69OvzUpz4V9vf3p93sTMpiFrOUwzAki9CQxdYji1CQxdbKcg7DkCwmJYs5DEOymBRymByy2HpkEQqy2HpkMRuCMAzDk9mAAQAAAAAAAAAAmGva5jtQAAAAAAAAAAAAVGygAAAAAAAAAAAARLCBAgAAAAAAAAAAEMEGCgAAAAAAAAAAQAQbKAAAAAAAAAAAABFsoAAAAAAAAAAAAESwgQIAAAAAAAAAABDBBgoAAAAAAAAAAEAEGygAAAAAAAAAAAARbKAAAAAAAAAAAABEsIECp375y19aEARv+XPJJZek3TSgrZBFwA9kEfADWQT8QBaB9JFDwA9kMTsKaTcAc8uqVavslVdemf57f3+/bdmyxS6++OIUWwW0H7II+IEsAn4gi4AfyCKQPnII+IEsZkcQhmGYdiMwN42Pj9sll1xiy5cvt3/4h3+wXI43PAFpIIuAH8gi4AeyCPiBLALpI4eAH8ii33gHClrmE5/4hJXLZXv44YcJPpAisgj4gSwCfiCLgB/IIpA+cgj4gSz6jQ0UtMSdd95p3/ve9+ypp56yRYsWpd0coG2RRcAPZBHwA1kE/EAWgfSRQ8APZNF/fIQXnHvggQdsx44d9t3vftc2b96cdnOAtkUWAT+QRcAPZBHwA1kE0kcOAT+QxWxgAwVO/exnP7O+vj7btWuX3XDDDdP/XiqVbMmSJSm2DGgvZBHwA1kE/EAWAT+QRSB95BDwA1nMDjZQ4NR9991nH//4x9/y7+9///tt//79yTcIaFNkEfADWQT8QBYBP5BFIH3kEPADWcwONlAAAAAAAAAAAAAicmk3AAAAAAAAAAAAwDdsoAAAAAAAAAAAAESwgQIAAAAAAAAAABDBBgoAAAAAAAAAAEAEGygAAAAAAAAAAAARbKAAAAAAAAAAAABEsIECAAAAAAAAAAAQwQYKAAAAAAAAAABABBsoAAAAAAAAAAAAEWygAAAAAAAAAAAARLCBAgAAAAAAAAAAEMEGCgAAAAAAAAAAQMT/A7G/QBtQ9qmPAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def guessSegmentation(db,setup,pId='MM',visitName='MIR',sx=32,sy=31,sz=31):\n", "\n", " idFilter={'variable':'PatientId','value':pId,'oper':'eq'}\n", " visitFilter={'variable':'visitName','value':visitName,'oper':'eq'} \n", " rows=getData.getPatients(db,setup,[idFilter,visitFilter])\n", " r=rows[0] \n", " pixels=segmentation.guessPixelPosition4(sx,sy,sz) \n", " segmentation.updateSegmentation(db,setup,r,pixels)\n", "\n", "#guessSegmentation(db,setup,sz=32,sx=33)\n", "def doPlotSegmentation(db,fb,setup,pId='MM',visitName='MIR',vmax=1000):\n", " idFilter={'variable':'PatientId','value':pId,'oper':'eq'}\n", " visitFilter={'variable':'visitName','value':visitName,'oper':'eq'} \n", " rows=getData.getPatients(db,setup,[idFilter,visitFilter])\n", " r=rows[0] \n", " segmentation.plotSegmentation(db,fb,r,setup,vmax)\n", "\n", "pId='MM'\n", "visitName='OBR'\n", "guessSegmentation(db,setup,pId,visitName,sx=32,sy=31,sz=33)\n", "doPlotSegmentation(db,fb,setup,pId,visitName,vmax=500)" ] }, { "cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "******10KF_MIR******\n", "******10KF_OBR******\n", "******MM_MIR******\n", "******MM_MIR1******\n", "******MM_OBR******\n" ] }, { "ename": "FileNotFoundError", "evalue": "[Errno 2] No such file or directory: '/home/studen/temp/dynamicSPECT/MM_OBR/MM_OBR_Segmentation.txt'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[80], line 5\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m r \u001b[38;5;129;01min\u001b[39;00m rows:\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m******\u001b[39m\u001b[38;5;132;01m{}\u001b[39;00m\u001b[38;5;124m******\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;241m.\u001b[39mformat(config\u001b[38;5;241m.\u001b[39mgetCode(r,setup)))\n\u001b[0;32m----> 5\u001b[0m \u001b[43msegmentation\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwriteSegmentation\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdb\u001b[49m\u001b[43m,\u001b[49m\u001b[43mr\u001b[49m\u001b[43m,\u001b[49m\u001b[43msetup\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/software/src/dynamicSPECT/pythonScripts/segmentation.py:152\u001b[0m, in \u001b[0;36mwriteSegmentation\u001b[0;34m(db, r, setup)\u001b[0m\n\u001b[1;32m 149\u001b[0m v[region,\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mfloat\u001b[39m(qr[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mz\u001b[39m\u001b[38;5;124m'\u001b[39m])\n\u001b[1;32m 150\u001b[0m \u001b[38;5;66;03m#for i in range(len(rows)):\u001b[39;00m\n\u001b[1;32m 151\u001b[0m \u001b[38;5;66;03m# print(v[i,:])\u001b[39;00m\n\u001b[0;32m--> 152\u001b[0m \u001b[43mnumpy\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msavetxt\u001b[49m\u001b[43m(\u001b[49m\u001b[43mos\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlocDir\u001b[49m\u001b[43m,\u001b[49m\u001b[43mfileName\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43mv\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m<__array_function__ internals>:5\u001b[0m, in \u001b[0;36msavetxt\u001b[0;34m(*args, **kwargs)\u001b[0m\n", "File \u001b[0;32m/usr/lib/python3/dist-packages/numpy/lib/npyio.py:1368\u001b[0m, in \u001b[0;36msavetxt\u001b[0;34m(fname, X, fmt, delimiter, newline, header, footer, comments, encoding)\u001b[0m\n\u001b[1;32m 1365\u001b[0m fname \u001b[38;5;241m=\u001b[39m os_fspath(fname)\n\u001b[1;32m 1366\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m _is_string_like(fname):\n\u001b[1;32m 1367\u001b[0m \u001b[38;5;66;03m# datasource doesn't support creating a new file ...\u001b[39;00m\n\u001b[0;32m-> 1368\u001b[0m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mfname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mwt\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mclose()\n\u001b[1;32m 1369\u001b[0m fh \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mlib\u001b[38;5;241m.\u001b[39m_datasource\u001b[38;5;241m.\u001b[39mopen(fname, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mwt\u001b[39m\u001b[38;5;124m'\u001b[39m, encoding\u001b[38;5;241m=\u001b[39mencoding)\n\u001b[1;32m 1370\u001b[0m own_fh \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n", "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/home/studen/temp/dynamicSPECT/MM_OBR/MM_OBR_Segmentation.txt'" ] } ], "source": [ "#rarely used. Mostly, segmentation points are edited in LabKey\n", "rows=getData.getPatients(db,setup)\n", "for r in rows:\n", " print('******{}******'.format(config.getCode(r,setup)))\n", " segmentation.writeSegmentation(db,r,setup)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" } }, "nbformat": 4, "nbformat_minor": 4 }