cardiacSPECT.py 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952
  1. import os
  2. import sys
  3. import unittest
  4. import vtk, qt, ctk, slicer
  5. from slicer.ScriptedLoadableModule import *
  6. import logging
  7. import parseDicom
  8. import vtkInterface as vi
  9. import fileIO
  10. import slicer
  11. import numpy as np
  12. import slicerNetwork
  13. import resample
  14. import json
  15. import re
  16. #
  17. # cardiacSPECT
  18. #
  19. class cardiacSPECT(ScriptedLoadableModule):
  20. """Uses ScriptedLoadableModule base class, available at:
  21. https://github.com/Slicer/Slicer/blob/master/Base/Python/slicer/ScriptedLoadableModule.py
  22. """
  23. def __init__(self, parent):
  24. ScriptedLoadableModule.__init__(self, parent)
  25. parent.title = "Cardiac SPECT"
  26. parent.categories = ["Examples"]
  27. parent.dependencies = []
  28. parent.contributors = ["Andrej Studen (FMF/JSI)"] # replace with "Firstname Lastname (Org)"
  29. parent.helpText = """
  30. Load dynamic cardiac SPECT data to Slicer
  31. """
  32. parent.acknowledgementText = """
  33. This module was developed within the frame of the ARRS sponsored medical
  34. physics research programe to investigate quantitative measurements of cardiac
  35. function using sestamibi-like tracers
  36. """ # replace with organization, grant and thanks.
  37. self.parent.helpText += self.getDefaultModuleDocumentationLink()
  38. self.parent = parent
  39. #
  40. # cardiacSPECTWidget
  41. #
  42. class cardiacSPECTWidget(ScriptedLoadableModuleWidget):
  43. """Uses ScriptedLoadableModuleWidget base class, available at:
  44. https://github.com/Slicer/Slicer/blob/master/Base/Python/slicer/ScriptedLoadableModule.py
  45. """
  46. def setup(self):
  47. ScriptedLoadableModuleWidget.setup(self)
  48. self.selectRemote=fileIO.remoteFileSelector()
  49. try:
  50. self.network=slicer.modules.labkeySlicerPythonExtensionWidget.network
  51. except:
  52. self.network=slicerNetwork.labkeyURIHandler()
  53. configFile=os.path.join(os.path.expanduser('~'),'.cardiacSPECT','cardiacSPECT.json')
  54. self.logic=cardiacSPECTLogic(configFile)
  55. self.logic.setURIHandler(self.network)
  56. self.selectRemote.setMaster(self)
  57. # Instantiate and connect widgets ...
  58. dataButton = ctk.ctkCollapsibleButton()
  59. dataButton.text = "Data"
  60. self.layout.addWidget(dataButton)
  61. # Layout within the sample collapsible button
  62. dataFormLayout = qt.QFormLayout(dataButton)
  63. self.patientId=qt.QLineEdit();
  64. dataFormLayout.addRow('Patient ID', self.patientId)
  65. self.refPatientId=qt.QLineEdit();
  66. dataFormLayout.addRow('Reference Patient ID', self.refPatientId)
  67. patientLoadButton = qt.QPushButton("Load")
  68. patientLoadButton.toolTip="Load data from DICOM"
  69. dataFormLayout.addRow("Patient",patientLoadButton)
  70. patientLoadButton.clicked.connect(self.onPatientLoadButtonClicked)
  71. patientLoadNRRDButton = qt.QPushButton("Load NRRD")
  72. patientLoadNRRDButton.toolTip="Load data from NRRD"
  73. dataFormLayout.addRow("Patient",patientLoadNRRDButton)
  74. patientLoadNRRDButton.clicked.connect(self.onPatientLoadNRRDButtonClicked)
  75. loadSegmentationButton = qt.QPushButton("Load")
  76. loadSegmentationButton.toolTip="Load segmentation from server"
  77. dataFormLayout.addRow("Segmentation",loadSegmentationButton)
  78. loadSegmentationButton.clicked.connect(self.onLoadSegmentationButtonClicked)
  79. saveVolumeButton = qt.QPushButton("Save")
  80. saveVolumeButton.toolTip="Save volume to NRRD"
  81. dataFormLayout.addRow("Volume",saveVolumeButton)
  82. saveVolumeButton.clicked.connect(self.onSaveVolumeButtonClicked)
  83. saveSegmentationButton = qt.QPushButton("Save")
  84. saveSegmentationButton.toolTip="Save segmentation to NRRD"
  85. dataFormLayout.addRow("Segmentation",saveSegmentationButton)
  86. saveSegmentationButton.clicked.connect(self.onSaveSegmentationButtonClicked)
  87. saveTransformationButton = qt.QPushButton("Save")
  88. saveTransformationButton.toolTip="Save transformation to NRRD"
  89. dataFormLayout.addRow("Transformation",saveTransformationButton)
  90. saveTransformationButton.clicked.connect(self.onSaveTransformationButtonClicked)
  91. saveInputFunctionButton = qt.QPushButton("Save")
  92. saveInputFunctionButton.toolTip="Save InputFunction to NRRD"
  93. dataFormLayout.addRow("InputFunction",saveInputFunctionButton)
  94. saveInputFunctionButton.clicked.connect(self.onSaveInputFunctionButtonClicked)
  95. transformNodeButton = qt.QPushButton("Transform Nodes")
  96. transformNodeButton.toolTip="Transform node with patient based transform"
  97. dataFormLayout.addRow("Transform Nodes",transformNodeButton)
  98. transformNodeButton.clicked.connect(self.onTransformNodeButtonClicked)
  99. # Add vertical spacer
  100. self.layout.addStretch(1)
  101. #addFrameButton=qt.QPushButton("Add Frame")
  102. #addFrameButton.toolTip="Add frame to VTK"
  103. #dataFormLayout.addWidget(addFrameButton)
  104. #addFrameButton.connect('clicked(bool)',self.onAddFrameButtonClicked)
  105. #addCTButton=qt.QPushButton("Add CT")
  106. #addCTButton.toolTip="Add CT to VTK"
  107. #dataFormLayout.addWidget(addCTButton)
  108. #addCTButton.connect('clicked(bool)',self.onAddCTButtonClicked)
  109. #
  110. # Parameters Area
  111. #
  112. parametersCollapsibleButton = ctk.ctkCollapsibleButton()
  113. parametersCollapsibleButton.text = "Parameters"
  114. self.layout.addWidget(parametersCollapsibleButton)
  115. # Layout within the dummy collapsible button
  116. parametersFormLayout = qt.QFormLayout(parametersCollapsibleButton)
  117. #
  118. # check box to trigger taking screen shots for later use in tutorials
  119. #
  120. hbox1=qt.QHBoxLayout()
  121. frameLabel = qt.QLabel()
  122. frameLabel.setText("Select frame")
  123. hbox1.addWidget(frameLabel)
  124. self.time_frame_select=qt.QSlider(qt.Qt.Horizontal)
  125. self.time_frame_select.valueChanged.connect(self.onTimeFrameSelect)
  126. #self.time_frame_select.connect('valueChanged()', self.onTimeFrameSelect)
  127. self.time_frame_select.setMinimum(0)
  128. self.time_frame_select.setMaximum(0)
  129. self.time_frame_select.setValue(0)
  130. self.time_frame_select.setTickPosition(qt.QSlider.TicksBelow)
  131. self.time_frame_select.setTickInterval(5)
  132. self.time_frame_select.toolTip = "Select the time frame"
  133. hbox1.addWidget(self.time_frame_select)
  134. parametersFormLayout.addRow(hbox1)
  135. hbox2 = qt.QHBoxLayout()
  136. meanROILabel = qt.QLabel()
  137. meanROILabel.setText("MeanROI")
  138. hbox2.addWidget(meanROILabel)
  139. self.meanROIVolume = qt.QLineEdit()
  140. self.meanROIVolume.setText("testVolume15")
  141. hbox2.addWidget(self.meanROIVolume)
  142. self.meanROISegment = qt.QLineEdit()
  143. self.meanROISegment.setText("Segment_1")
  144. hbox2.addWidget(self.meanROISegment)
  145. computeMeanROI = qt.QPushButton("Compute mean ROI")
  146. computeMeanROI.connect('clicked(bool)',self.onComputeMeanROIClicked)
  147. hbox2.addWidget(computeMeanROI)
  148. self.meanROIResult = qt.QLineEdit()
  149. self.meanROIResult.setText("0")
  150. hbox2.addWidget(self.meanROIResult)
  151. parametersFormLayout.addRow(hbox2)
  152. #row 3
  153. hbox3 = qt.QHBoxLayout()
  154. drawTimePlot=qt.QPushButton("Draw ROI time plot")
  155. drawTimePlot.connect('clicked(bool)',self.onDrawTimePlotClicked)
  156. hbox3.addWidget(drawTimePlot)
  157. parametersFormLayout.addRow(hbox3)
  158. #dataFormLayout.addWidget(hbox)
  159. #row 4
  160. hbox4 = qt.QHBoxLayout()
  161. countSegments=qt.QPushButton("Count segmentation segments")
  162. countSegments.connect('clicked(bool)',self.onCountSegmentsClicked)
  163. hbox4.addWidget(countSegments)
  164. self.countSegmentsDisplay=qt.QLineEdit()
  165. self.countSegmentsDisplay.setText("0")
  166. hbox4.addWidget(self.countSegmentsDisplay)
  167. parametersFormLayout.addRow(hbox4)
  168. #
  169. # Apply Button
  170. #
  171. self.applyButton = qt.QPushButton("Apply")
  172. self.applyButton.toolTip = "Run the algorithm."
  173. self.applyButton.enabled = False
  174. parametersFormLayout.addRow(self.applyButton)
  175. # connections
  176. self.applyButton.connect('clicked(bool)', self.onApplyButton)
  177. #self.inputSelector.connect("currentNodeChanged(vtkMRMLNode*)", self.onSelect)
  178. #self.outputSelector.connect("currentNodeChanged(vtkMRMLNode*)", self.onSelect)
  179. # Add vertical spacer
  180. self.layout.addStretch(1)
  181. self.resetPosition=1
  182. def cleanup(self):
  183. pass
  184. def onApplyButton(self):
  185. pass
  186. #logic = cardiacSPECTLogic()
  187. #imageThreshold = self.imageThresholdSliderWidget.value
  188. def onBrowseButtonClicked(self):
  189. startDir=self.dataPath.text
  190. inputDir=qt.QFileDialog.getExistingDirectory(None,
  191. 'Select DICOM directory',startDir)
  192. self.dataPath.setText("file://"+inputDir)
  193. def onRemoteBrowseButtonClicked(self):
  194. self.selectRemote.show()
  195. def onDataLoadButtonClicked(self):
  196. self.logic.loadData(self)
  197. def onRemotePathTextChanged(self,str):
  198. self.dataPath.setText('labkey://'+str)
  199. def onTimeFrameSelect(self):
  200. it=self.time_frame_select.value
  201. selectionNode = slicer.app.applicationLogic().GetSelectionNode()
  202. print("Propagating CT volume")
  203. nodeName=self.patientId.text+'CT'
  204. node=slicer.mrmlScene.GetFirstNodeByName(nodeName)
  205. selectionNode.SetReferenceActiveVolumeID(node.GetID())
  206. if self.resetPosition==1:
  207. self.resetPosition=0
  208. slicer.app.applicationLogic().PropagateVolumeSelection(1)
  209. else:
  210. slicer.app.applicationLogic().PropagateVolumeSelection(0)
  211. print("Propagating SPECT volume")
  212. nodeName=self.patientId.text+'Volume'+str(it)
  213. node=slicer.mrmlScene.GetFirstNodeByName(nodeName)
  214. selectionNode.SetSecondaryVolumeID(node.GetID())
  215. slicer.app.applicationLogic().PropagateForegroundVolumeSelection(0)
  216. node.GetDisplayNode().SetAndObserveColorNodeID('vtkMRMLColorTableNodeRed')
  217. lm = slicer.app.layoutManager()
  218. sID=['Red','Yellow','Green']
  219. for s in sID:
  220. sliceLogic = lm.sliceWidget(s).sliceLogic()
  221. compositeNode = sliceLogic.GetSliceCompositeNode()
  222. compositeNode.SetForegroundOpacity(0.5)
  223. #make sure the viewer is matched to the volume
  224. print("Done")
  225. #to access sliceLogic (slice control) use
  226. #lcol=slicer.app.layoutManager().mrmlSliceLogics() (vtkCollection)
  227. #vtkMRMLSliceLogic are named by colors (Red,Green,Blue)
  228. def onComputeMeanROIClicked(self):
  229. s=self.logic.meanROI(self.meanROIVolume.text,self.meanROISegment.text)
  230. self.meanROIResult.setText(str(s))
  231. def onDrawTimePlotClicked(self):
  232. n=self.time_frame_select.maximum+1
  233. ft=self.logic.frame_time
  234. #find number of segments
  235. ns = self.logic.countSegments()
  236. #add the chart node
  237. cn = slicer.mrmlScene.AddNode(slicer.vtkMRMLChartNode())
  238. for j in range(0,ns):
  239. #add node for data
  240. dn = slicer.mrmlScene.AddNode(slicer.vtkMRMLDoubleArrayNode())
  241. dn.SetSize(n)
  242. dn.SetName(self.patientId.text+'_'+self.logic.getSegmentName(j))
  243. dt=0;
  244. t0=0;
  245. for i in range(0,n):
  246. vol=self.patientId.text+"Volume"+str(i)
  247. fx=ft[i]
  248. fy=self.logic.meanROI(vol,j)
  249. dt=2*ft[i]-t0
  250. t0+=dt
  251. dn.SetValue(i, 0, fx)
  252. dn.SetValue(i, 1, fy/dt)
  253. dn.SetValue(i, 2, 0)
  254. print("[{0} at {1:.2f}:{2:.2f}]".format(vol,fx,fy))
  255. #fish the number of the segment
  256. cn.AddArray(self.logic.getSegmentName(j), dn.GetID())
  257. cn.SetProperty('default', 'title', 'ROI time plot')
  258. cn.SetProperty('default', 'xAxisLabel', 'time [ms]')
  259. cn.SetProperty('default', 'yAxisLabel', 'Activity (arb)')
  260. #update the chart node
  261. cvns = slicer.mrmlScene.GetNodesByClass('vtkMRMLChartViewNode')
  262. if cvns.GetNumberOfItems() == 0:
  263. cvn = slicer.mrmlScene.AddNode(slicer.vtkMRMLChartViewNode())
  264. else:
  265. cvn = cvns.GetItemAsObject(0)
  266. cvn.SetChartNodeID(cn.GetID())
  267. def onCountSegmentsClicked(self):
  268. self.countSegmentsDisplay.setText(self.logic.countSegments())
  269. def onPatientLoadButtonClicked(self):
  270. self.logic.loadPatient(self.patientId.text)
  271. self.time_frame_select.setMaximum(self.logic.frame_data.shape[3]-1)
  272. def onPatientLoadNRRDButtonClicked(self):
  273. self.logic.loadPatientNRRD(self.patientId.text)
  274. self.time_frame_select.setMaximum(len(self.logic.frame_time))
  275. def onLoadSegmentationButtonClicked(self):
  276. self.logic.loadSegmentation(self.patientId.text)
  277. def onSaveVolumeButtonClicked(self):
  278. self.logic.storeVolumeNodes(self.patientId.text,
  279. self.time_frame_select.minimum,self.time_frame_select.maximum)
  280. def onSaveSegmentationButtonClicked(self):
  281. self.logic.storeSegmentation(self.patientId.text)
  282. def onSaveTransformationButtonClicked(self):
  283. self.logic.storeTransformation(self.patientId.text)
  284. def onSaveInputFunctionButtonClicked(self):
  285. self.logic.storeInputFunction(self.patientId.text)
  286. def onTransformNodeButtonClicked(self):
  287. self.logic.applyTransform(self.patientId.text, self.refPatientId.text,
  288. self.time_frame_select.minimum,self.time_frame_select.maximum)
  289. #def onAddFrameButtonClicked(self):
  290. # it=int(self.time_frame_select.text)
  291. # self.logic.addFrame(it)
  292. # def onAddCTButtonClicked(self):
  293. # self.logic.addCT()
  294. #
  295. #
  296. # cardiacSPECTLogic
  297. #
  298. class cardiacSPECTLogic(ScriptedLoadableModuleLogic):
  299. """This class should implement all the actual
  300. computation done by your module. The interface
  301. should be such that other python code can import
  302. this class and make use of the functionality without
  303. requiring an instance of the Widget.
  304. Uses ScriptedLoadableModuleLogic base class, available at:
  305. https://github.com/Slicer/Slicer/blob/master/Base/Python/slicer/ScriptedLoadableModule.py
  306. """
  307. def __init__(self,config):
  308. ScriptedLoadableModuleLogic.__init__(self)
  309. self.pd=parseDicom.parseDicomLogic(self)
  310. self.resampler=resample.resampleLogic(None)
  311. fname=config
  312. try:
  313. f=open(fname)
  314. except OSError as e:
  315. print "Confgiuration error: OS error({0}): {1}".format(e.errno, e.strerror)
  316. return
  317. self.cfg=json.load(f)
  318. self.coreRelativePath=self.cfg["project"]+'/'+self.cfg['atFiles']
  319. def setURIHandler(self,net):
  320. self.net=net
  321. self.pd.setURIHandler(net)
  322. def loadData(self,widget):
  323. inputDir=str(widget.dataPath.text)
  324. self.pd.readMasterDirectory(inputDir)
  325. self.frame_data, self.frame_time, self.frame_origin, \
  326. self.frame_pixel_size, self.frame_orientation=self.pd.readNMDirectory(inputDir)
  327. self.ct_data,self.ct_origin,self.ct_pixel_size, \
  328. self.ct_orientation=self.pd.readCTDirectory(inputDir)
  329. self.ct_orientation=vi.completeOrientation(self.ct_orientation)
  330. self.frame_orientation=vi.completeOrientation(self.frame_orientation)
  331. self.addCT('test')
  332. self.addFrames('test')
  333. widget.time_frame_select.setMaximum(self.frame_data.shape[3]-1)
  334. #additional message via qt
  335. qt.QMessageBox.information(
  336. slicer.util.mainWindow(),
  337. 'Slicer Python','Data loaded')
  338. def getFilespecPath(self,r):
  339. if self.cfg["remote"]==True:
  340. path=r['_labkeyurl_Series']
  341. path=path[:path.rfind('/')]
  342. return "labkey://"+path
  343. else:
  344. path=os.path.join(self.cfg["dicomPath"],r["Study"],r["Series"])
  345. return "file://"+path
  346. def loadPatient(self,patientId):
  347. print("Loading {}").format(patientId)
  348. ds=self.net.loadDataset("dinamic_spect/Patients","Imaging")
  349. for r in ds['rows']:
  350. if r['aliasID']==patientId:
  351. visit=r
  352. print visit
  353. dicoms=self.net.loadDataset("Test/Transfer","Imaging")
  354. for r in dicoms['rows']:
  355. if not r['PatientId']==visit['aliasID']:
  356. continue
  357. if abs(r['SequenceNum']-float(visit['nmMaster']))<0.1:
  358. masterPath=self.getFilespecPath(r)
  359. #masterPath="labkey://"+path
  360. if abs(r['SequenceNum']-float(visit['nmCorrData']))<0.1:
  361. nmPath=self.getFilespecPath(r)
  362. #nmPath="labkey://"+path
  363. if abs(r['SequenceNum']-float(visit['ctData']))<0.1:
  364. ctPath=self.getFilespecPath(r)
  365. #ctPath="labkey://"+path
  366. self.pd.readMasterDirectory(masterPath)
  367. self.frame_data, self.frame_time, self.frame_origin, \
  368. self.frame_pixel_size, self.frame_orientation=self.pd.readNMDirectory(nmPath)
  369. self.ct_data,self.ct_origin,self.ct_pixel_size, \
  370. self.ct_orientation=self.pd.readCTDirectory(ctPath)
  371. self.ct_orientation=vi.completeOrientation(self.ct_orientation)
  372. self.frame_orientation=vi.completeOrientation(self.frame_orientation)
  373. self.addCT(patientId)
  374. self.addFrames(patientId)
  375. def loadPatientNRRD(self,patientId):
  376. print("Loading NRRD {}").format(patientId)
  377. self.loadDummyInputFunction(patientId)
  378. dnsNode=slicer.util.getFirstNodeByName(patientId+'_Dummy')
  379. if dnsNode==None:
  380. print("Could not find dummy double array node")
  381. return
  382. n=dnsNode.GetSize();
  383. self.frame_time=np.zeros(n);
  384. a=vtk.reference(1)
  385. for i in range(0,n):
  386. self.loadVolume(patientId,i)
  387. self.frame_time[i]=dnsNode.GetValue(i,0,a)
  388. self.loadCTVolume(patientId)
  389. self.loadSegmentation(patientId)
  390. def loadDummyInputFunction(self,patientId):
  391. self.loadNode(patientId,patientId+'_Dummy','DoubleArrayFile','.mcsv')
  392. def loadVolume(self,patientId,i):
  393. self.loadNode(patientId,patientId+'Volume'+str(i),'VolumeFile')
  394. def loadCTVolume(self,patientId):
  395. self.loadNode(patientId,patientId+'CT','VolumeFile')
  396. def loadSegmentation(self,patientId):
  397. self.loadNode(patientId,'Heart','SegmentationFile')
  398. def loadNode(self,patientId,fName,type,suffix='.nrrd'):
  399. relativePath=self.coreRelativePath+'/'+patientId
  400. labkeyFile=relativePath+'/'+fName+suffix
  401. print ("Remote: {}").format(labkeyFile)
  402. self.net.loadNode(labkeyFile,type,returnNode=True)
  403. def addNode(self,nodeName,v, lpsOrigin, pixel_size, lpsOrientation, dataType):
  404. # if dataType=0 it is CT data, which gets propagated to background an is
  405. #used to fit the view field dimensions
  406. # if dataType=1, it is SPECT data, which gets propagated to foreground
  407. #and is not fit; keeping window set from CT
  408. #nodeName='testVolume'+str(it)
  409. newNode=slicer.vtkMRMLScalarVolumeNode()
  410. newNode.SetName(nodeName)
  411. #pixel_size=[0,0,0]
  412. #pixel_size=v.GetSpacing()
  413. #print(pixel_size)
  414. #origin=[0,0,0]
  415. #origin=v.GetOrigin()
  416. v.SetOrigin([0,0,0])
  417. v.SetSpacing([1,1,1])
  418. ijkToRAS = vtk.vtkMatrix4x4()
  419. #think how to do this with image orientation
  420. rasOrientation=[-lpsOrientation[i] if (i%3 < 2) else lpsOrientation[i]
  421. for i in range(0,len(lpsOrientation))]
  422. rasOrigin=[-lpsOrigin[i] if (i%3<2) else lpsOrigin[i] for i in range(0,len(lpsOrigin))]
  423. for i in range(0,3):
  424. for j in range(0,3):
  425. ijkToRAS.SetElement(i,j,pixel_size[i]*rasOrientation[3*j+i])
  426. ijkToRAS.SetElement(i,3,rasOrigin[i])
  427. newNode.SetIJKToRASMatrix(ijkToRAS)
  428. newNode.SetAndObserveImageData(v)
  429. slicer.mrmlScene.AddNode(newNode)
  430. def addFrames(self,patientId):
  431. #convert data from numpy.array to vtkImageData
  432. #use time point it
  433. print "NFrames: {}".format(self.frame_data.shape[3])
  434. for it in range(0,self.frame_data.shape[3]):
  435. frame_data=self.frame_data[:,:,:,it];
  436. nodeName=patientId+'Volume'+str(it)
  437. self.addNode(nodeName,
  438. vi.numpyToVTK(frame_data,frame_data.shape),
  439. self.frame_origin,
  440. self.frame_pixel_size,
  441. self.frame_orientation,1)
  442. def addCT(self,patientId):
  443. nodeName=patientId+'CT'
  444. self.addNode(nodeName,
  445. #vi.numpyToVTK3D(self.ct_data,
  446. # self.ct_origin,self.ct_pixel_size),
  447. vi.numpyToVTK(self.ct_data,self.ct_data.shape),
  448. self.ct_origin,self.ct_pixel_size,
  449. self.ct_orientation,0)
  450. def rFromI(i,volumeNode):
  451. ijkToRas = vtk.vtkMatrix4x4()
  452. volumeNode.GetIJKToRASMatrix(ijkToRas)
  453. vImage=volumeNode.GetImageData()
  454. i1=list(vImage.GetPoint(i))
  455. i1=i1.append(1)
  456. #ras are global coordinates (in mm)
  457. position_ras=ijkToRas.MultiplyPoint(i1)
  458. return position_ras[0:3]
  459. def IfromR(pos,volumeNode):
  460. fM=vtk.vtkMatrix4x4()
  461. volumeNode.GetRASToIJKMatrix(fM)
  462. fM.MultiplyPoint(pos)
  463. vImage=volumeNode.GetImageData()
  464. #nearest neighbor
  465. return vImage.FindPoint(pos[0:3])
  466. def getMaskPos(self,mask,i):
  467. maskIJK=mask.GetPoint(i)
  468. maskIJK=[r-c for r,c in zip(maskIJK,mask.GetOrigin())]
  469. maskIJK=[r/s for r,s in zip(maskIJK,mask.GetSpacing())]
  470. #this is now in extent spacing, whitch ImageToWorldMatrix understands
  471. #to 4D vector for vtkMatrix4x4 handling
  472. maskIJK.append(1)
  473. #go to ras, global coordinates (in mm)
  474. maskImageToWorldMatrix=vtk.vtkMatrix4x4()
  475. mask.GetImageToWorldMatrix(maskImageToWorldMatrix)
  476. maskPos=maskImageToWorldMatrix.MultiplyPoint(maskIJK)
  477. return maskPos[0:3]
  478. def meanROI(self, volName1, i):
  479. s=0
  480. #get the segmentation mask
  481. fNode=slicer.mrmlScene.GetNodesByClass("vtkMRMLSegmentationNode").GetItemAsObject(0)
  482. print "Found segmentation node: {}".format(fNode.GetName())
  483. segNode=slicer.vtkMRMLSegmentationNode.SafeDownCast(fNode)
  484. #no python bindings for vtkSegmentation
  485. #if segNode.GetSegmentation().GetNumberOfSegments()==0 :
  486. # print("No segments available")
  487. # return 0
  488. #edit here to change for more segments
  489. segment=segNode.GetSegmentation().GetNthSegmentID(int(i))
  490. mask = segNode.GetBinaryLabelmapRepresentation(segment)
  491. if mask==None:
  492. print("Segment {} not found".format(segment))
  493. return s
  494. print "Got mask for segment {}, npts {}".format(segment,mask.GetNumberOfPoints())
  495. #get mask at (x,y,z)
  496. #mask.GetPointData().GetScalars().GetTuple1(mask.FindPoint([x,y,z]))
  497. #get the image data
  498. dataNode=slicer.mrmlScene.GetFirstNodeByName(volName1)
  499. dataImage=dataNode.GetImageData()
  500. # use IJK2RAS to get global coordinates
  501. dataRAStoIJK = vtk.vtkMatrix4x4()
  502. dataNode.GetRASToIJKMatrix(dataRAStoIJK)
  503. #allow for interpolation in segmentation pixels
  504. coeff=vtk.vtkImageBSplineCoefficients()
  505. coeff.SetInputData(dataImage)
  506. coeff.SetBorderMode(vtk.VTK_IMAGE_BORDER_CLAMP)
  507. #between 3 and 5
  508. coeff.SetSplineDegree(5)
  509. coeff.Update()
  510. maskImageToWorldMatrix=vtk.vtkMatrix4x4()
  511. mask.GetImageToWorldMatrix(maskImageToWorldMatrix)
  512. ns=0
  513. maskN=mask.GetNumberOfPoints()
  514. maskScalars=mask.GetPointData().GetScalars()
  515. maskOrigin=[0,0,0]
  516. maskOrigin=mask.GetOrigin()
  517. for i in range(0,maskN):
  518. #skip all points that are 0
  519. if maskScalars.GetTuple1(i)==0:
  520. continue
  521. #get global coordinates of point i
  522. maskPos=self.getMaskPos(mask,i)
  523. #print("Evaluating at {}").format(maskPos)
  524. #convert from global to local
  525. dataPos=[0,0,0]
  526. #account for potentially applied transform on dataNode
  527. dataNode.TransformPointFromWorld(maskPos,dataPos)
  528. dataPos.append(1)
  529. dataIJK=dataRAStoIJK.MultiplyPoint(dataPos)
  530. #drop the 4th index
  531. dataIJK=dataIJK[0:3]
  532. #interpolate
  533. s+=coeff.Evaluate(dataIJK)
  534. ns+=1
  535. return s/ns
  536. def countSegments(self):
  537. segNodeList=slicer.mrmlScene.GetNodesByClass("vtkMRMLSegmentationNode")
  538. if segNodeList.GetNumberOfItems()==0:
  539. return 0
  540. fNode=segNodeList.GetItemAsObject(0)
  541. segNode=slicer.vtkMRMLSegmentationNode.SafeDownCast(fNode)
  542. if fNode==None:
  543. return 0
  544. return segNode.GetSegmentation().GetNumberOfSegments()
  545. def getSegmentName(self,i):
  546. segNodeList=slicer.mrmlScene.GetNodesByClass("vtkMRMLSegmentationNode")
  547. if segNodeList.GetNumberOfItems()==0:
  548. return "NONE"
  549. fNode=segNodeList.GetItemAsObject(0)
  550. segNode=slicer.vtkMRMLSegmentationNode.SafeDownCast(fNode)
  551. if fNode==None:
  552. return "NONE"
  553. return segNode.GetSegmentation().GetSegment(segNode.GetSegmentation().GetNthSegmentID(i)).GetName()
  554. def storeNodeRemote(self,relativePath,nodeName):
  555. labkeyPath=self.pd.net.GetLabkeyPathFromRelativePath(relativePath)
  556. print ("Remote: {}").format(labkeyPath)
  557. #checks if exists
  558. self.pd.net.mkdir(labkeyPath)
  559. localPath=self.pd.net.GetLocalPathFromRelativePath(relativePath)
  560. localPath.replace('/',os.path.sep)
  561. node=slicer.mrmlScene.GetFirstNodeByName(nodeName)
  562. if node==None:
  563. print("Node {} not found").format(nodeName)
  564. return
  565. suffix=".nrrd"
  566. if node.__class__.__name__=="vtkMRMLDoubleArrayNode":
  567. suffix=".mcsv"
  568. if (node.__class__.__name__=="vtkMRMLTransformNode" or
  569. node.__class__.__name__=="vtkMRMLGridTransformNode"):
  570. suffix=".h5"
  571. fileName=re.sub(r'_RS$',r'',nodeName)+suffix
  572. if not os.path.isdir(localPath):
  573. os.mkdir(localPath)
  574. file=os.path.join(localPath,fileName)
  575. slicer.util.saveNode(node,file)
  576. print("Stored to: {}").format(file)
  577. f=open(file,"rb")
  578. remoteFile=labkeyPath+'/'+fileName
  579. self.pd.net.put(remoteFile,f.read())
  580. def storeVolumeNodes(self,patientId,n1,n2):
  581. #n1=self.time_frame.minimum;
  582. #n2=self.time_frame.maximum
  583. relativePath=self.coreRelativePath+'/'+patientId
  584. print("Store CT")
  585. nodeName=patientId+'CT'
  586. #prefer resampled
  587. testNode=slicer.util.getFirstNodeByName(nodeName+"_RS")
  588. if testNode:
  589. nodeName=nodeName+"_RS"
  590. self.storeNodeRemote(relativePath,nodeName)
  591. print("Storing NM from {} to {}").format(n1,n2)
  592. n=n2-n1+1
  593. for i in range(n):
  594. it=i+n1
  595. nodeName=patientId+'Volume'+str(it)
  596. #prefer resampled
  597. testNode=slicer.util.getFirstNodeByName(nodeName+"_RS")
  598. if testNode:
  599. nodeName=nodeName+"_RS"
  600. self.storeNodeRemote(relativePath,nodeName)
  601. self.storeDummyInputFunction(patientId)
  602. def storeSegmentation(self,patientId):
  603. relativePath=self.coreRelativePath+'/'+patientId
  604. segNodeName="Heart"
  605. self.storeNodeRemote(relativePath,segNodeName)
  606. def storeInputFunction(self,patientId):
  607. self.calculateInputFunction(patientId)
  608. relativePath=self.coreRelativePath+'/'+patientId
  609. doubleArrayNodeName=patientId+'_Ventricle'
  610. self.storeNodeRemote(relativePath,doubleArrayNodeName)
  611. def storeDummyInputFunction(self,patientId):
  612. self.calculateDummyInputFunction(patientId)
  613. relativePath=self.coreRelativePath+'/'+patientId
  614. doubleArrayNodeName=patientId+'_Dummy'
  615. self.storeNodeRemote(relativePath,doubleArrayNodeName)
  616. def storeTransformation(self,patientId):
  617. relativePath=self.coreRelativePath+'/'+patientId
  618. transformNodeName=patientId+"_DF"
  619. self.storeNodeRemote(relativePath,transformNodeName)
  620. def applyTransform(self, patientId,refPatientId,n1,n2):
  621. if patientId == refPatientId:
  622. print("Transform [{}] and reference [{}] are the same".format(patientId, refPatientId))
  623. return
  624. transformNodeName=patientId+"_DF"
  625. transformNode=slicer.util.getFirstNodeByName(transformNodeName)
  626. if transformNode==None:
  627. print("Transform node [{}] not found").format(transformNodeName)
  628. return
  629. n=n2-n1+1
  630. for i in range(n):
  631. it=i+n1
  632. nodeName=patientId+'Volume'+str(it)
  633. node=slicer.util.getFirstNodeByName(nodeName)
  634. if node==None:
  635. continue
  636. node.SetAndObserveTransformNodeID(transformNode.GetID())
  637. refNodeName=refPatientId+'Volume'+str(it)
  638. refNode=slicer.util.getFirstNodeByName(refNodeName)
  639. if refNode!=None:
  640. self.resampler.rebinNode(node,refNode)
  641. print("Completed transformation {}").format(it)
  642. nodeName=patientId+'CT'
  643. node=slicer.util.getFirstNodeByName(nodeName)
  644. if not node==None:
  645. node.SetAndObserveTransformNodeID(transformNode.GetID())
  646. refNodeName=refPatientId+'CT'
  647. refNode=slicer.util.getFirstNodeByName(refNodeName)
  648. if refNode!=None:
  649. self.resampler.rebinNode(node,refNode)
  650. def calculateInputFunction(self,patientId):
  651. n=len(self.frame_time)
  652. dnsNodeName=patientId+'_Ventricle'
  653. dns = slicer.mrmlScene.GetNodesByClassByName('vtkMRMLDoubleArrayNode',dnsNodeName)
  654. if dns.GetNumberOfItems() == 0:
  655. dn = slicer.mrmlScene.AddNode(slicer.vtkMRMLDoubleArrayNode())
  656. dn.SetName(dnsNodeName)
  657. else:
  658. dn = dns.GetItemAsObject(0)
  659. dn.SetSize(n)
  660. fNodes=slicer.mrmlScene.GetNodesByClass("vtkMRMLSegmentationNode")
  661. if fNodes.GetNumberOfItems() == 0:
  662. return
  663. fNode=fNodes.GetItemAsObject(0)
  664. segNode=slicer.vtkMRMLSegmentationNode.SafeDownCast(fNode)
  665. segmentation=segNode.GetSegmentation()
  666. juse=-1
  667. for j in range(0,segmentation.GetNumberOfSegments()):
  668. segmentID=segNode.GetSegmentation().GetNthSegmentID(j)
  669. segment=segNode.GetSegmentation().GetSegment(segmentID)
  670. if segment.GetName()=='Ventricle':
  671. juse=j
  672. break
  673. if juse<0:
  674. print 'Failed to find Ventricle segment'
  675. return
  676. dt=0;
  677. t0=0;
  678. ft=self.frame_time
  679. for i in range(0,n):
  680. vol=patientId+"Volume"+str(i)
  681. fx=ft[i]
  682. fy=self.meanROI(vol,juse)
  683. dt=2*ft[i]-t0
  684. t0+=dt
  685. dn.SetValue(i, 0, fx)
  686. dn.SetValue(i, 1, fy/dt)
  687. dn.SetValue(i, 2, 0)
  688. print("[{0} at {1:.2f}:{2:.2f}]".format(vol,fx,fy))
  689. def calculateDummyInputFunction(self,patientId):
  690. n=self.frame_data.shape[3]
  691. dnsNodeName=patientId+'_Dummy'
  692. dns = slicer.mrmlScene.GetNodesByClassByName('vtkMRMLDoubleArrayNode',dnsNodeName)
  693. if dns.GetNumberOfItems() == 0:
  694. dn = slicer.mrmlScene.AddNode(slicer.vtkMRMLDoubleArrayNode())
  695. dn.SetName(dnsNodeName)
  696. else:
  697. dn = dns.GetItemAsObject(0)
  698. dn.SetSize(n)
  699. ft=self.frame_time
  700. for i in range(0,n):
  701. fx=ft[i]
  702. dn.SetValue(i, 0, fx)
  703. dn.SetValue(i, 1, 0)
  704. dn.SetValue(i, 2, 0)
  705. class cardiacSPECTTest(ScriptedLoadableModuleTest):
  706. """
  707. This is the test case for your scripted module.
  708. Uses ScriptedLoadableModuleTest base class, available at:
  709. https://github.com/Slicer/Slicer/blob/master/Base/Python/slicer/ScriptedLoadableModule.py
  710. """
  711. def setUp(self):
  712. """ Do whatever is needed to reset the state - typically a scene clear will be enough.
  713. """
  714. slicer.mrmlScene.Clear(0)
  715. def runTest(self):
  716. """Run as few or as many tests as needed here.
  717. """
  718. self.setUp()
  719. self.test_cardiacSPECT1()
  720. def test_cardiacSPECT1(self):
  721. """ Ideally you should have several levels of tests. At the lowest level
  722. tests should exercise the functionality of the logic with different inputs
  723. (both valid and invalid). At higher levels your tests should emulate the
  724. way the user would interact with your code and confirm that it still works
  725. the way you intended.
  726. One of the most important features of the tests is that it should alert other
  727. developers when their changes will have an impact on the behavior of your
  728. module. For example, if a developer removes a feature that you depend on,
  729. your test should break so they know that the feature is needed.
  730. """
  731. self.delayDisplay("Starting the test")
  732. #
  733. # first, get some data
  734. #
  735. self.delayDisplay('Test passed!')