cardiacSPECT.py 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883
  1. import os
  2. import sys
  3. import unittest
  4. import vtk, qt, ctk, slicer
  5. from slicer.ScriptedLoadableModule import *
  6. import logging
  7. import parseDicom
  8. import vtkInterface as vi
  9. import fileIO
  10. import slicer
  11. import numpy as np
  12. import slicerNetwork
  13. import resample
  14. #
  15. # cardiacSPECT
  16. #
  17. class cardiacSPECT(ScriptedLoadableModule):
  18. """Uses ScriptedLoadableModule base class, available at:
  19. https://github.com/Slicer/Slicer/blob/master/Base/Python/slicer/ScriptedLoadableModule.py
  20. """
  21. def __init__(self, parent):
  22. ScriptedLoadableModule.__init__(self, parent)
  23. parent.title = "Cardiac SPECT"
  24. parent.categories = ["Examples"]
  25. parent.dependencies = []
  26. parent.contributors = ["Andrej Studen (FMF/JSI)"] # replace with "Firstname Lastname (Org)"
  27. parent.helpText = """
  28. Load dynamic cardiac SPECT data to Slicer
  29. """
  30. parent.acknowledgementText = """
  31. This module was developed within the frame of the ARRS sponsored medical
  32. physics research programe to investigate quantitative measurements of cardiac
  33. function using sestamibi-like tracers
  34. """ # replace with organization, grant and thanks.
  35. self.parent.helpText += self.getDefaultModuleDocumentationLink()
  36. self.parent = parent
  37. #
  38. # cardiacSPECTWidget
  39. #
  40. class cardiacSPECTWidget(ScriptedLoadableModuleWidget):
  41. """Uses ScriptedLoadableModuleWidget base class, available at:
  42. https://github.com/Slicer/Slicer/blob/master/Base/Python/slicer/ScriptedLoadableModule.py
  43. """
  44. def setup(self):
  45. ScriptedLoadableModuleWidget.setup(self)
  46. self.selectRemote=fileIO.remoteFileSelector()
  47. try:
  48. self.network=slicer.modules.labkeySlicerPythonExtensionWidget.network
  49. except:
  50. self.network=slicerNetwork.labkeyURIHandler()
  51. self.logic=cardiacSPECTLogic(self)
  52. self.logic.setURIHandler(self.network)
  53. self.selectRemote.setMaster(self)
  54. # Instantiate and connect widgets ...
  55. dataButton = ctk.ctkCollapsibleButton()
  56. dataButton.text = "Data"
  57. self.layout.addWidget(dataButton)
  58. # Layout within the sample collapsible button
  59. dataFormLayout = qt.QFormLayout(dataButton)
  60. #pathGuess="file://"+os.environ['HOME']+"/SPECT"
  61. pathGuess="labkey://" + "dinamic_spect/%40files/Dinamika%20test2/SPECT_Dinamika_Rekonstruirano"
  62. self.dataPath=qt.QLineEdit(pathGuess)
  63. dataFormLayout.addRow("Data location",self.dataPath)
  64. self.remotePath=qt.QLineEdit();
  65. dataFormLayout.addRow('Remote Path', self.remotePath)
  66. self.remotePath.textChanged.connect(self.onRemotePathTextChanged)
  67. browseButton = qt.QPushButton("Browse local")
  68. browseButton.toolTip="Set file location"
  69. dataFormLayout.addRow("Select local",browseButton)
  70. browseButton.connect('clicked(bool)',self.onBrowseButtonClicked)
  71. browseRemoteButton = qt.QPushButton("Browse remote")
  72. browseRemoteButton.toolTip="Set remote location"
  73. dataFormLayout.addRow("Select remote",browseRemoteButton)
  74. browseRemoteButton.connect('clicked(bool)',self.onRemoteBrowseButtonClicked)
  75. dataLoadButton = qt.QPushButton("Load")
  76. dataLoadButton.toolTip="Load data from DICOM"
  77. dataFormLayout.addRow("Data",dataLoadButton)
  78. dataLoadButton.connect('clicked(bool)',self.onDataLoadButtonClicked)
  79. self.dataLoadButton = dataLoadButton
  80. self.patientId=qt.QLineEdit();
  81. dataFormLayout.addRow('Patient ID', self.patientId)
  82. self.refPatientId=qt.QLineEdit();
  83. dataFormLayout.addRow('Reference Patient ID', self.refPatientId)
  84. patientLoadButton = qt.QPushButton("Load")
  85. patientLoadButton.toolTip="Load data from DICOM"
  86. dataFormLayout.addRow("Patient",patientLoadButton)
  87. patientLoadButton.clicked.connect(self.onPatientLoadButtonClicked)
  88. loadSegmentationButton = qt.QPushButton("Load")
  89. loadSegmentationButton.toolTip="Load segmentation from server"
  90. dataFormLayout.addRow("Segmentation",loadSegmentationButton)
  91. loadSegmentationButton.clicked.connect(self.onLoadSegmentationButtonClicked)
  92. saveVolumeButton = qt.QPushButton("Save")
  93. saveVolumeButton.toolTip="Save volume to NRRD"
  94. dataFormLayout.addRow("Volume",saveVolumeButton)
  95. saveVolumeButton.clicked.connect(self.onSaveVolumeButtonClicked)
  96. saveSegmentationButton = qt.QPushButton("Save")
  97. saveSegmentationButton.toolTip="Save segmentation to NRRD"
  98. dataFormLayout.addRow("Segmentation",saveSegmentationButton)
  99. saveSegmentationButton.clicked.connect(self.onSaveSegmentationButtonClicked)
  100. saveTransformationButton = qt.QPushButton("Save")
  101. saveTransformationButton.toolTip="Save transformation to NRRD"
  102. dataFormLayout.addRow("Transformation",saveTransformationButton)
  103. saveTransformationButton.clicked.connect(self.onSaveTransformationButtonClicked)
  104. saveInputFunctionButton = qt.QPushButton("Save")
  105. saveInputFunctionButton.toolTip="Save InputFunction to NRRD"
  106. dataFormLayout.addRow("InputFunction",saveInputFunctionButton)
  107. saveInputFunctionButton.clicked.connect(self.onSaveInputFunctionButtonClicked)
  108. transformNodeButton = qt.QPushButton("Transform Nodes")
  109. transformNodeButton.toolTip="Transform node with patient based transform"
  110. dataFormLayout.addRow("Transform Nodes",transformNodeButton)
  111. transformNodeButton.clicked.connect(self.onTransformNodeButtonClicked)
  112. # Add vertical spacer
  113. self.layout.addStretch(1)
  114. #addFrameButton=qt.QPushButton("Add Frame")
  115. #addFrameButton.toolTip="Add frame to VTK"
  116. #dataFormLayout.addWidget(addFrameButton)
  117. #addFrameButton.connect('clicked(bool)',self.onAddFrameButtonClicked)
  118. #addCTButton=qt.QPushButton("Add CT")
  119. #addCTButton.toolTip="Add CT to VTK"
  120. #dataFormLayout.addWidget(addCTButton)
  121. #addCTButton.connect('clicked(bool)',self.onAddCTButtonClicked)
  122. #
  123. # Parameters Area
  124. #
  125. parametersCollapsibleButton = ctk.ctkCollapsibleButton()
  126. parametersCollapsibleButton.text = "Parameters"
  127. self.layout.addWidget(parametersCollapsibleButton)
  128. # Layout within the dummy collapsible button
  129. parametersFormLayout = qt.QFormLayout(parametersCollapsibleButton)
  130. #
  131. # check box to trigger taking screen shots for later use in tutorials
  132. #
  133. hbox1=qt.QHBoxLayout()
  134. frameLabel = qt.QLabel()
  135. frameLabel.setText("Select frame")
  136. hbox1.addWidget(frameLabel)
  137. self.time_frame_select=qt.QSlider(qt.Qt.Horizontal)
  138. self.time_frame_select.valueChanged.connect(self.onTimeFrameSelect)
  139. #self.time_frame_select.connect('valueChanged()', self.onTimeFrameSelect)
  140. self.time_frame_select.setMinimum(0)
  141. self.time_frame_select.setMaximum(0)
  142. self.time_frame_select.setValue(0)
  143. self.time_frame_select.setTickPosition(qt.QSlider.TicksBelow)
  144. self.time_frame_select.setTickInterval(5)
  145. self.time_frame_select.toolTip = "Select the time frame"
  146. hbox1.addWidget(self.time_frame_select)
  147. parametersFormLayout.addRow(hbox1)
  148. hbox2 = qt.QHBoxLayout()
  149. meanROILabel = qt.QLabel()
  150. meanROILabel.setText("MeanROI")
  151. hbox2.addWidget(meanROILabel)
  152. self.meanROIVolume = qt.QLineEdit()
  153. self.meanROIVolume.setText("testVolume15")
  154. hbox2.addWidget(self.meanROIVolume)
  155. self.meanROISegment = qt.QLineEdit()
  156. self.meanROISegment.setText("Segment_1")
  157. hbox2.addWidget(self.meanROISegment)
  158. computeMeanROI = qt.QPushButton("Compute mean ROI")
  159. computeMeanROI.connect('clicked(bool)',self.onComputeMeanROIClicked)
  160. hbox2.addWidget(computeMeanROI)
  161. self.meanROIResult = qt.QLineEdit()
  162. self.meanROIResult.setText("0")
  163. hbox2.addWidget(self.meanROIResult)
  164. parametersFormLayout.addRow(hbox2)
  165. #row 3
  166. hbox3 = qt.QHBoxLayout()
  167. drawTimePlot=qt.QPushButton("Draw ROI time plot")
  168. drawTimePlot.connect('clicked(bool)',self.onDrawTimePlotClicked)
  169. hbox3.addWidget(drawTimePlot)
  170. parametersFormLayout.addRow(hbox3)
  171. #dataFormLayout.addWidget(hbox)
  172. #row 4
  173. hbox4 = qt.QHBoxLayout()
  174. countSegments=qt.QPushButton("Count segmentation segments")
  175. countSegments.connect('clicked(bool)',self.onCountSegmentsClicked)
  176. hbox4.addWidget(countSegments)
  177. self.countSegmentsDisplay=qt.QLineEdit()
  178. self.countSegmentsDisplay.setText("0")
  179. hbox4.addWidget(self.countSegmentsDisplay)
  180. parametersFormLayout.addRow(hbox4)
  181. #
  182. # Apply Button
  183. #
  184. self.applyButton = qt.QPushButton("Apply")
  185. self.applyButton.toolTip = "Run the algorithm."
  186. self.applyButton.enabled = False
  187. parametersFormLayout.addRow(self.applyButton)
  188. # connections
  189. self.applyButton.connect('clicked(bool)', self.onApplyButton)
  190. #self.inputSelector.connect("currentNodeChanged(vtkMRMLNode*)", self.onSelect)
  191. #self.outputSelector.connect("currentNodeChanged(vtkMRMLNode*)", self.onSelect)
  192. # Add vertical spacer
  193. self.layout.addStretch(1)
  194. self.resetPosition=1
  195. def cleanup(self):
  196. pass
  197. def onApplyButton(self):
  198. pass
  199. #logic = cardiacSPECTLogic()
  200. #imageThreshold = self.imageThresholdSliderWidget.value
  201. def onBrowseButtonClicked(self):
  202. startDir=self.dataPath.text
  203. inputDir=qt.QFileDialog.getExistingDirectory(None,
  204. 'Select DICOM directory',startDir)
  205. self.dataPath.setText("file://"+inputDir)
  206. def onRemoteBrowseButtonClicked(self):
  207. self.selectRemote.show()
  208. def onDataLoadButtonClicked(self):
  209. self.logic.loadData(self)
  210. def onRemotePathTextChanged(self,str):
  211. self.dataPath.setText('labkey://'+str)
  212. def onTimeFrameSelect(self):
  213. it=self.time_frame_select.value
  214. selectionNode = slicer.app.applicationLogic().GetSelectionNode()
  215. print("Propagating CT volume")
  216. nodeName=self.patientId.text+'CT'
  217. node=slicer.mrmlScene.GetFirstNodeByName(nodeName)
  218. selectionNode.SetReferenceActiveVolumeID(node.GetID())
  219. if self.resetPosition==1:
  220. self.resetPosition=0
  221. slicer.app.applicationLogic().PropagateVolumeSelection(1)
  222. else:
  223. slicer.app.applicationLogic().PropagateVolumeSelection(0)
  224. print("Propagating SPECT volume")
  225. nodeName=self.patientId.text+'Volume'+str(it)
  226. node=slicer.mrmlScene.GetFirstNodeByName(nodeName)
  227. selectionNode.SetSecondaryVolumeID(node.GetID())
  228. slicer.app.applicationLogic().PropagateForegroundVolumeSelection(0)
  229. node.GetDisplayNode().SetAndObserveColorNodeID('vtkMRMLColorTableNodeRed')
  230. lm = slicer.app.layoutManager()
  231. sID=['Red','Yellow','Green']
  232. for s in sID:
  233. sliceLogic = lm.sliceWidget(s).sliceLogic()
  234. compositeNode = sliceLogic.GetSliceCompositeNode()
  235. compositeNode.SetForegroundOpacity(0.5)
  236. #make sure the viewer is matched to the volume
  237. print("Done")
  238. #to access sliceLogic (slice control) use
  239. #lcol=slicer.app.layoutManager().mrmlSliceLogics() (vtkCollection)
  240. #vtkMRMLSliceLogic are named by colors (Red,Green,Blue)
  241. def onComputeMeanROIClicked(self):
  242. s=self.logic.meanROI(self.meanROIVolume.text,self.meanROISegment.text)
  243. self.meanROIResult.setText(str(s))
  244. def onDrawTimePlotClicked(self):
  245. n=self.time_frame_select.maximum+1
  246. ft=self.logic.frame_time
  247. #find number of segments
  248. ns = self.logic.countSegments()
  249. #add the chart node
  250. cn = slicer.mrmlScene.AddNode(slicer.vtkMRMLChartNode())
  251. for j in range(0,ns):
  252. #add node for data
  253. dn = slicer.mrmlScene.AddNode(slicer.vtkMRMLDoubleArrayNode())
  254. dn.SetSize(n)
  255. dn.SetName(self.patientId.text+'_'+self.logic.getSegmentName(j))
  256. dt=0;
  257. t0=0;
  258. for i in range(0,n):
  259. vol=self.patientId.text+"Volume"+str(i)
  260. fx=ft[i]
  261. fy=self.logic.meanROI(vol,j)
  262. dt=2*ft[i]-t0
  263. t0+=dt
  264. dn.SetValue(i, 0, fx)
  265. dn.SetValue(i, 1, fy/dt)
  266. dn.SetValue(i, 2, 0)
  267. print("[{0} at {1:.2f}:{2:.2f}]".format(vol,fx,fy))
  268. #fish the number of the segment
  269. cn.AddArray(self.logic.getSegmentName(j), dn.GetID())
  270. cn.SetProperty('default', 'title', 'ROI time plot')
  271. cn.SetProperty('default', 'xAxisLabel', 'time [ms]')
  272. cn.SetProperty('default', 'yAxisLabel', 'Activity (arb)')
  273. #update the chart node
  274. cvns = slicer.mrmlScene.GetNodesByClass('vtkMRMLChartViewNode')
  275. if cvns.GetNumberOfItems() == 0:
  276. cvn = slicer.mrmlScene.AddNode(slicer.vtkMRMLChartViewNode())
  277. else:
  278. cvn = cvns.GetItemAsObject(0)
  279. cvn.SetChartNodeID(cn.GetID())
  280. def onCountSegmentsClicked(self):
  281. self.countSegmentsDisplay.setText(self.logic.countSegments())
  282. def onPatientLoadButtonClicked(self):
  283. self.logic.loadPatient(self,self.patientId.text)
  284. def onLoadSegmentationButtonClicked(self):
  285. self.logic.loadSegmentation(self.patientId.text)
  286. def onSaveVolumeButtonClicked(self):
  287. self.logic.storeVolumeNodes(self.patientId.text,
  288. self.time_frame_select.minimum,self.time_frame_select.maximum)
  289. def onSaveSegmentationButtonClicked(self):
  290. self.logic.storeSegmentation(self.patientId.text)
  291. def onSaveTransformationButtonClicked(self):
  292. self.logic.storeTransformation(self.patientId.text)
  293. def onSaveInputFunctionButtonClicked(self):
  294. self.logic.storeInputFunction(self.patientId.text)
  295. def onTransformNodeButtonClicked(self):
  296. self.logic.applyTransform(self.patientId.text, self.refPatientId.text,
  297. self.time_frame_select.minimum,self.time_frame_select.maximum)
  298. #def onAddFrameButtonClicked(self):
  299. # it=int(self.time_frame_select.text)
  300. # self.logic.addFrame(it)
  301. # def onAddCTButtonClicked(self):
  302. # self.logic.addCT()
  303. #
  304. #
  305. # cardiacSPECTLogic
  306. #
  307. class cardiacSPECTLogic(ScriptedLoadableModuleLogic):
  308. """This class should implement all the actual
  309. computation done by your module. The interface
  310. should be such that other python code can import
  311. this class and make use of the functionality without
  312. requiring an instance of the Widget.
  313. Uses ScriptedLoadableModuleLogic base class, available at:
  314. https://github.com/Slicer/Slicer/blob/master/Base/Python/slicer/ScriptedLoadableModule.py
  315. """
  316. def __init__(self,parent):
  317. ScriptedLoadableModuleLogic.__init__(self, parent)
  318. self.pd=parseDicom.parseDicomLogic(self)
  319. def setURIHandler(self,net):
  320. self.net=net
  321. self.pd.setURIHandler(net)
  322. def loadData(self,widget):
  323. inputDir=str(widget.dataPath.text)
  324. self.pd.readMasterDirectory(inputDir)
  325. self.frame_data, self.frame_time, self.frame_origin, \
  326. self.frame_pixel_size, self.frame_orientation=self.pd.readNMDirectory(inputDir)
  327. self.ct_data,self.ct_origin,self.ct_pixel_size, \
  328. self.ct_orientation=self.pd.readCTDirectory(inputDir)
  329. self.ct_orientation=vi.completeOrientation(self.ct_orientation)
  330. self.frame_orientation=vi.completeOrientation(self.frame_orientation)
  331. self.addCT('test')
  332. self.addFrames('test')
  333. widget.time_frame_select.setMaximum(self.frame_data.shape[3]-1)
  334. #additional message via qt
  335. qt.QMessageBox.information(
  336. slicer.util.mainWindow(),
  337. 'Slicer Python','Data loaded')
  338. def formatToGetfileSpec(self,path):
  339. #path=self.net.GetRelativePathFromLabkeyPath(path)
  340. path="labkey://"+path
  341. return path
  342. def loadPatient(self,widget,patientId):
  343. print("Loading {}").format(patientId)
  344. ds=self.net.loadDataset("dinamic_spect/Patients","Imaging")
  345. for r in ds['rows']:
  346. if r['aliasID']==patientId:
  347. visit=r
  348. print visit
  349. dicoms=self.net.loadDataset("Test/Transfer","Imaging")
  350. for r in dicoms['rows']:
  351. if not r['PatientId']==visit['aliasID']:
  352. continue
  353. if abs(r['SequenceNum']-float(visit['nmMaster']))<0.1:
  354. path=r['_labkeyurl_Series']
  355. masterPath=path[:path.rfind('/')]
  356. #masterPath="labkey://"+path
  357. if abs(r['SequenceNum']-float(visit['nmCorrData']))<0.1:
  358. path=r['_labkeyurl_Series']
  359. nmPath=path[:path.rfind('/')]
  360. #nmPath="labkey://"+path
  361. if abs(r['SequenceNum']-float(visit['ctData']))<0.1:
  362. path=r['_labkeyurl_Series']
  363. ctPath=path[:path.rfind('/')]
  364. #ctPath="labkey://"+path
  365. self.pd.readMasterDirectory(self.formatToGetfileSpec(masterPath))
  366. self.frame_data, self.frame_time, self.frame_origin, \
  367. self.frame_pixel_size, self.frame_orientation=self.pd.readNMDirectory(self.formatToGetfileSpec(nmPath))
  368. self.ct_data,self.ct_origin,self.ct_pixel_size, \
  369. self.ct_orientation=self.pd.readCTDirectory(self.formatToGetfileSpec(ctPath))
  370. self.ct_orientation=vi.completeOrientation(self.ct_orientation)
  371. self.frame_orientation=vi.completeOrientation(self.frame_orientation)
  372. self.addCT(patientId)
  373. self.addFrames(patientId)
  374. widget.time_frame_select.setMaximum(self.frame_data.shape[3]-1)
  375. def loadSegmentation(self,patientId):
  376. project="dinamic_spect/Patients"
  377. relativePath=project+'/@files/'+patientId
  378. segName="Heart"
  379. labkeyFile=relativePath+'/'+segName+'.nrrd'
  380. print ("Remote: {}").format(labkeyFile)
  381. self.net.loadNode(labkeyFile,'SegmentationFile')
  382. def addNode(self,nodeName,v, lpsOrigin, pixel_size, lpsOrientation, dataType):
  383. # if dataType=0 it is CT data, which gets propagated to background an is
  384. #used to fit the view field dimensions
  385. # if dataType=1, it is SPECT data, which gets propagated to foreground
  386. #and is not fit; keeping window set from CT
  387. #nodeName='testVolume'+str(it)
  388. newNode=slicer.vtkMRMLScalarVolumeNode()
  389. newNode.SetName(nodeName)
  390. #pixel_size=[0,0,0]
  391. #pixel_size=v.GetSpacing()
  392. #print(pixel_size)
  393. #origin=[0,0,0]
  394. #origin=v.GetOrigin()
  395. v.SetOrigin([0,0,0])
  396. v.SetSpacing([1,1,1])
  397. ijkToRAS = vtk.vtkMatrix4x4()
  398. #think how to do this with image orientation
  399. rasOrientation=[-lpsOrientation[i] if (i%3 < 2) else lpsOrientation[i]
  400. for i in range(0,len(lpsOrientation))]
  401. rasOrigin=[-lpsOrigin[i] if (i%3<2) else lpsOrigin[i] for i in range(0,len(lpsOrigin))]
  402. for i in range(0,3):
  403. for j in range(0,3):
  404. ijkToRAS.SetElement(i,j,pixel_size[i]*rasOrientation[3*j+i])
  405. ijkToRAS.SetElement(i,3,rasOrigin[i])
  406. newNode.SetIJKToRASMatrix(ijkToRAS)
  407. newNode.SetAndObserveImageData(v)
  408. slicer.mrmlScene.AddNode(newNode)
  409. def addFrames(self,patientId):
  410. #convert data from numpy.array to vtkImageData
  411. #use time point it
  412. print "NFrames: {}".format(self.frame_data.shape[3])
  413. for it in range(0,self.frame_data.shape[3]):
  414. frame_data=self.frame_data[:,:,:,it];
  415. nodeName=patientId+'Volume'+str(it)
  416. self.addNode(nodeName,
  417. vi.numpyToVTK(frame_data,frame_data.shape),
  418. self.frame_origin,
  419. self.frame_pixel_size,
  420. self.frame_orientation,1)
  421. def addCT(self,patientId):
  422. nodeName=patientId+'CT'
  423. self.addNode(nodeName,
  424. #vi.numpyToVTK3D(self.ct_data,
  425. # self.ct_origin,self.ct_pixel_size),
  426. vi.numpyToVTK(self.ct_data,self.ct_data.shape),
  427. self.ct_origin,self.ct_pixel_size,
  428. self.ct_orientation,0)
  429. def rFromI(i,volumeNode):
  430. ijkToRas = vtk.vtkMatrix4x4()
  431. volumeNode.GetIJKToRASMatrix(ijkToRas)
  432. vImage=volumeNode.GetImageData()
  433. i1=list(vImage.GetPoint(i))
  434. i1=i1.append(1)
  435. #ras are global coordinates (in mm)
  436. position_ras=ijkToRas.MultiplyPoint(i1)
  437. return position_ras[0:3]
  438. def IfromR(pos,volumeNode):
  439. fM=vtk.vtkMatrix4x4()
  440. volumeNode.GetRASToIJKMatrix(fM)
  441. fM.MultiplyPoint(pos)
  442. vImage=volumeNode.GetImageData()
  443. #nearest neighbor
  444. return vImage.FindPoint(pos[0:3])
  445. def getMaskPos(self,mask,i):
  446. maskIJK=mask.GetPoint(i)
  447. maskIJK=[r-c for r,c in zip(maskIJK,mask.GetOrigin())]
  448. maskIJK=[r/s for r,s in zip(maskIJK,mask.GetSpacing())]
  449. #this is now in extent spacing, whitch ImageToWorldMatrix understands
  450. #to 4D vector for vtkMatrix4x4 handling
  451. maskIJK.append(1)
  452. #go to ras, global coordinates (in mm)
  453. maskImageToWorldMatrix=vtk.vtkMatrix4x4()
  454. mask.GetImageToWorldMatrix(maskImageToWorldMatrix)
  455. maskPos=maskImageToWorldMatrix.MultiplyPoint(maskIJK)
  456. return maskPos[0:3]
  457. def meanROI(self, volName1, i):
  458. s=0
  459. #get the segmentation mask
  460. fNode=slicer.mrmlScene.GetNodesByClass("vtkMRMLSegmentationNode").GetItemAsObject(0)
  461. print "Found segmentation node: {}".format(fNode.GetName())
  462. segNode=slicer.vtkMRMLSegmentationNode.SafeDownCast(fNode)
  463. #no python bindings for vtkSegmentation
  464. #if segNode.GetSegmentation().GetNumberOfSegments()==0 :
  465. # print("No segments available")
  466. # return 0
  467. #edit here to change for more segments
  468. segment=segNode.GetSegmentation().GetNthSegmentID(int(i))
  469. mask = segNode.GetBinaryLabelmapRepresentation(segment)
  470. if mask==None:
  471. print("Segment {} not found".format(segment))
  472. return s
  473. print "Got mask for segment {}, npts {}".format(segment,mask.GetNumberOfPoints())
  474. #get mask at (x,y,z)
  475. #mask.GetPointData().GetScalars().GetTuple1(mask.FindPoint([x,y,z]))
  476. #get the image data
  477. dataNode=slicer.mrmlScene.GetFirstNodeByName(volName1)
  478. dataImage=dataNode.GetImageData()
  479. # use IJK2RAS to get global coordinates
  480. dataRAStoIJK = vtk.vtkMatrix4x4()
  481. dataNode.GetRASToIJKMatrix(dataRAStoIJK)
  482. #allow for interpolation in segmentation pixels
  483. coeff=vtk.vtkImageBSplineCoefficients()
  484. coeff.SetInputData(dataImage)
  485. coeff.SetBorderMode(vtk.VTK_IMAGE_BORDER_CLAMP)
  486. #between 3 and 5
  487. coeff.SetSplineDegree(5)
  488. coeff.Update()
  489. maskImageToWorldMatrix=vtk.vtkMatrix4x4()
  490. mask.GetImageToWorldMatrix(maskImageToWorldMatrix)
  491. ns=0
  492. maskN=mask.GetNumberOfPoints()
  493. maskScalars=mask.GetPointData().GetScalars()
  494. maskOrigin=[0,0,0]
  495. maskOrigin=mask.GetOrigin()
  496. for i in range(0,maskN):
  497. #skip all points that are 0
  498. if maskScalars.GetTuple1(i)==0:
  499. continue
  500. #get global coordinates of point i
  501. maskPos=self.getMaskPos(mask,i)
  502. #print("Evaluating at {}").format(maskPos)
  503. #convert from global to local
  504. dataPos=[0,0,0]
  505. #account for potentially applied transform on dataNode
  506. dataNode.TransformPointFromWorld(maskPos,dataPos)
  507. dataPos.append(1)
  508. dataIJK=dataRAStoIJK.MultiplyPoint(dataPos)
  509. #drop the 4th index
  510. dataIJK=dataIJK[0:3]
  511. #interpolate
  512. s+=coeff.Evaluate(dataIJK)
  513. ns+=1
  514. return s/ns
  515. def countSegments(self):
  516. segNodeList=slicer.mrmlScene.GetNodesByClass("vtkMRMLSegmentationNode")
  517. if segNodeList.GetNumberOfItems()==0:
  518. return 0
  519. fNode=segNodeList.GetItemAsObject(0)
  520. segNode=slicer.vtkMRMLSegmentationNode.SafeDownCast(fNode)
  521. if fNode==None:
  522. return 0
  523. return segNode.GetSegmentation().GetNumberOfSegments()
  524. def getSegmentName(self,i):
  525. segNodeList=slicer.mrmlScene.GetNodesByClass("vtkMRMLSegmentationNode")
  526. if segNodeList.GetNumberOfItems()==0:
  527. return "NONE"
  528. fNode=segNodeList.GetItemAsObject(0)
  529. segNode=slicer.vtkMRMLSegmentationNode.SafeDownCast(fNode)
  530. if fNode==None:
  531. return "NONE"
  532. return segNode.GetSegmentation().GetSegment(segNode.GetSegmentation().GetNthSegmentID(i)).GetName()
  533. def storeNodeRemote(self,relativePath,nodeName):
  534. labkeyPath=self.pd.net.GetLabkeyPathFromRelativePath(relativePath)
  535. print ("Remote: {}").format(labkeyPath)
  536. #checks if exists
  537. self.pd.net.mkdir(labkeyPath)
  538. localPath=self.pd.net.GetLocalPathFromRelativePath(relativePath)
  539. localPath.replace('/',os.path.sep)
  540. node=slicer.mrmlScene.GetFirstNodeByName(nodeName)
  541. if node==None:
  542. print("Node {} not found").format(nodeName)
  543. return
  544. suffix=".nrrd"
  545. if node.__class__.__name__=="vtkMRMLDoubleArrayNode":
  546. suffix=".mcsv"
  547. if (node.__class__.__name__=="vtkMRMLTransformNode" or
  548. node.__class__.__name__=="vtkMRMLGridTransformNode"):
  549. suffix=".h5"
  550. fileName=nodeName+suffix
  551. if not os.path.isdir(localPath):
  552. os.mkdir(localPath)
  553. file=os.path.join(localPath,fileName)
  554. slicer.util.saveNode(node,file)
  555. print("Stored to: {}").format(file)
  556. f=open(file,'rb')
  557. remoteFile=labkeyPath+'/'+fileName
  558. self.pd.net.put(remoteFile,f.read())
  559. def storeVolumeNodes(self,patientId,n1,n2):
  560. #n1=self.time_frame.minimum;
  561. #n2=self.time_frame.maximum
  562. project="dinamic_spect/Patients"
  563. relativePath=project+'/@files/'+patientId
  564. print("Store CT")
  565. nodeName=patientId+'CT'
  566. self.storeNodeRemote(relativePath,nodeName)
  567. print("Storing NM from {} to {}").format(n1,n2)
  568. n=n2-n1+1
  569. for i in range(n):
  570. it=i+n1
  571. nodeName=patientId+'Volume'+str(it)
  572. self.storeNodeRemote(relativePath,nodeName)
  573. def storeSegmentation(self,patientId):
  574. project="dinamic_spect/Patients"
  575. relativePath=project+'/@files/'+patientId
  576. segNodeName="Heart"
  577. self.storeNodeRemote(relativePath,segNodeName)
  578. def storeInputFunction(self,patientId):
  579. self.calculateInputFunction(patientId)
  580. project="dinamic_spect/Patients"
  581. relativePath=project+'/@files/'+patientId
  582. doubleArrayNodeName=patientId+'_Ventricle'
  583. self.storeNodeRemote(relativePath,doubleArrayNodeName)
  584. def storeTransformation(self,patientId):
  585. project="dinamic_spect/Patients"
  586. relativePath=project+'/@files/'+patientId
  587. transformNodeName=patientId+"_DF"
  588. self.storeNodeRemote(relativePath,transformNodeName)
  589. def applyTransform(self, patientId,refPatientId,n1,n2):
  590. transformNodeName=patientId+"_DF"
  591. transformNode=slicer.util.getFirstNodeByName(transformNodeName)
  592. if transformNode==None:
  593. print("Node {} not found").format(transformNodeName)
  594. return
  595. try:
  596. self.resampler.printMe()
  597. return
  598. except AttributeError:
  599. print("Initializing resampler")
  600. self.resampler=resample.resampleLogic(None)
  601. n=n2-n1+1
  602. for i in range(n):
  603. it=i+n1
  604. nodeName=patientId+'Volume'+str(it)
  605. node=slicer.util.getFirstNodeByName(nodeName)
  606. if node==None:
  607. continue
  608. node.SetAndObserveTransformNodeID(transformNode.GetID())
  609. refNodeName=refPatientId+'Volume'+str(it)
  610. refNode=slicer.util.getFirstNodeByName(refNodeName)
  611. if refNode!=None:
  612. self.resampler.rebinNode(node,refNode)
  613. print("Completed transformation {}").format(it)
  614. nodeName=patientId+'CT'
  615. node=slicer.util.getFirstNodeByName(nodeName)
  616. if not node==None:
  617. node.SetAndObserveTransformNodeID(transformNode.GetID())
  618. refNodeName=refPatientId+'CT'
  619. refNode=slicer.util.getFirstNodeByName(refNodeName)
  620. if refNode!=None:
  621. self.resampler.rebinNode(node,refNode)
  622. def calculateInputFunction(self,patientId):
  623. n=self.frame_data.shape[3]
  624. dnsNodeName=patientId+'_Ventricle'
  625. dns = slicer.mrmlScene.GetNodesByClassByName('vtkMRMLDoubleArrayNode',dnsNodeName)
  626. if dns.GetNumberOfItems() == 0:
  627. dn = slicer.mrmlScene.AddNode(slicer.vtkMRMLDoubleArrayNode())
  628. dn.SetName(dnsNodeName)
  629. else:
  630. dn = dns.GetItemAsObject(0)
  631. dn.SetSize(n)
  632. fNodes=slicer.mrmlScene.GetNodesByClass("vtkMRMLSegmentationNode")
  633. if fNodes.GetNumberOfItems() == 0:
  634. return
  635. fNode=fNodes.GetItemAsObject(0)
  636. segNode=slicer.vtkMRMLSegmentationNode.SafeDownCast(fNode)
  637. segmentation=segNode.GetSegmentation()
  638. juse=-1
  639. for j in range(0,segmentation.GetNumberOfSegments()):
  640. segmentID=segNode.GetSegmentation().GetNthSegmentID(j)
  641. segment=segNode.GetSegmentation().GetSegment(segmentID)
  642. if segment.GetName()=='Ventricle':
  643. juse=j
  644. break
  645. if juse<0:
  646. print 'Failed to find Ventricle segment'
  647. return
  648. dt=0;
  649. t0=0;
  650. ft=self.frame_time
  651. for i in range(0,n):
  652. vol=patientId+"Volume"+str(i)
  653. fx=ft[i]
  654. fy=self.meanROI(vol,juse)
  655. dt=2*ft[i]-t0
  656. t0+=dt
  657. dn.SetValue(i, 0, fx)
  658. dn.SetValue(i, 1, fy/dt)
  659. dn.SetValue(i, 2, 0)
  660. print("[{0} at {1:.2f}:{2:.2f}]".format(vol,fx,fy))
  661. class cardiacSPECTTest(ScriptedLoadableModuleTest):
  662. """
  663. This is the test case for your scripted module.
  664. Uses ScriptedLoadableModuleTest base class, available at:
  665. https://github.com/Slicer/Slicer/blob/master/Base/Python/slicer/ScriptedLoadableModule.py
  666. """
  667. def setUp(self):
  668. """ Do whatever is needed to reset the state - typically a scene clear will be enough.
  669. """
  670. slicer.mrmlScene.Clear(0)
  671. def runTest(self):
  672. """Run as few or as many tests as needed here.
  673. """
  674. self.setUp()
  675. self.test_cardiacSPECT1()
  676. def test_cardiacSPECT1(self):
  677. """ Ideally you should have several levels of tests. At the lowest level
  678. tests should exercise the functionality of the logic with different inputs
  679. (both valid and invalid). At higher levels your tests should emulate the
  680. way the user would interact with your code and confirm that it still works
  681. the way you intended.
  682. One of the most important features of the tests is that it should alert other
  683. developers when their changes will have an impact on the behavior of your
  684. module. For example, if a developer removes a feature that you depend on,
  685. your test should break so they know that the feature is needed.
  686. """
  687. self.delayDisplay("Starting the test")
  688. #
  689. # first, get some data
  690. #
  691. self.delayDisplay('Test passed!')