segmentation3.json 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. {
  2. "setVariables":["__tempBase__","__segBase__","__roiFile__","__petFile__","__ctFile__","__segFile__","__modelName__","__suffix__"],
  3. "setVariablesComment":"this variables will get updated with local values like home and can be used to set variables further on",
  4. "__tempBase__":"__home__/temp/segmentation",
  5. "__segBase__":"/home/andrej/software/src/irAEMM/segmentation",
  6. "__roiFile__":"testMask",
  7. "__ctFile__":"testCT",
  8. "__petFile__":"testPET",
  9. "__segFile__":"segmentation",
  10. "__modelName__":"DM_defaults.DM_train_VISCERAL16_Fold1.final.2019-10-01.07.46.19.932616.model.ckpt",
  11. "__suffix__":"nii.gz",
  12. "tempBase":"__tempBase__",
  13. "model":"__model__",
  14. "project":"iPNUMMretro/Study",
  15. "targetSchema":"study",
  16. "targetQuery":"Imaging1",
  17. "participantField":"PatientId",
  18. "imageDir":"preprocessedImages",
  19. "segmentationSchema":"study",
  20. "segmentationQuery":"Segmentations",
  21. "version":"v3",
  22. "images":{
  23. "comment":"weight is coded as a sequence of intervals and [k,n] of linear function inbetween",
  24. "crop":{
  25. "00":{
  26. "range":["0","0.5"],
  27. "axis":"2",
  28. "n":"NONE",
  29. "w":[
  30. {"range":["0.0","0.3333"],"n":"1"},
  31. {"range":["0.3333","0.4166"],"k":"-12","n":"5"},
  32. {"range":["0.4166","1"],"n":"0"}
  33. ]
  34. },
  35. "01":{
  36. "range":["0.25","0.75"],
  37. "axis":"2",
  38. "n":"NONE",
  39. "w":[
  40. {"range":["0.0","0.3333"],"n":"0"},
  41. {"range":["0.3333","0.4166"],"k":"12","n":"-4"},
  42. {"range":["0.4166","0.5833"],"n":"1"},
  43. {"range":["0.5833","0.6666"],"k":"-12","n":"8"},
  44. {"range":["0.6666","1"],"n":"0"}
  45. ]
  46. },
  47. "02":{
  48. "range":["0.5","1"],
  49. "axis":"2",
  50. "n":"NONE",
  51. "w":[
  52. {"range":["0.0","0.5833"],"n":"0"},
  53. {"range":["0.5833","0.6666"],"k":"12","n":"-7"},
  54. {"range":["0.6666","1"],"n":"1"}
  55. ]
  56. }
  57. },
  58. "images":{
  59. "CT":{
  60. "queryField":"ctResampled",
  61. "tempFile":"__tempBase__/__ctFile__.__suffix__",
  62. "fileList":"__tempBase__/testChannels_CT.cfg"
  63. },
  64. "patientmask":{
  65. "queryField":"ROImask",
  66. "tempFile":"__tempBase__/__roiFile__.__suffix__",
  67. "fileList":"__tempBase__/testRoiMasks.cfg"
  68. },
  69. "segmentations":{
  70. "tempFile":"__segFile__.__suffix__",
  71. "fileList":"__tempBase__/testNamesOfPredictions.cfg"
  72. }
  73. }
  74. },
  75. "replacePattern":{
  76. "__workDir__":"__tempBase__",
  77. "__roi__":"__tempBase__/__roiFile__.__suffix__",
  78. "__pet__":"__tempBase__/__petFile__.__suffix__",
  79. "__ct__":"__tempBase__/__ctFile__.__suffix__",
  80. "__seg__":"__segFile__.__suffix__",
  81. "__model__":"__modelName__",
  82. "__segmentBase__":"__segBase__",
  83. "__sfx__":"__suffix__"
  84. },
  85. "deepmedic": {
  86. "config":{
  87. "model":{
  88. "template":"__segBase__/model/modelConfig.cfg.template",
  89. "out":"__tempBase__/modelConfig.cfg"
  90. },
  91. "test":{
  92. "template":"__segBase__/test/testConfig.cfg.template",
  93. "out":"__tempBase__/testConfig.cfg"
  94. }
  95. }
  96. }
  97. }