123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- modelName = "model_name"
- folderForOutput = "__workDir__/output"
- numberOfOutputClasses = 19
- numberOfInputChannels = 1
- numberFMsPerLayerNormal = [30, 30, 40, 40, 40, 40, 50, 50]
- kernelDimPerLayerNormal = [[3,3,3], [3,3,3], [3,3,3], [3,3,3], [3,3,3], [3,3,3], [3,3,3], [3,3,3]]
- layersWithResidualConnNormal = [4,6,8]
- lowerRankLayersNormal = []
- useSubsampledPathway = True
- numberFMsPerLayerSubsampled = [30, 30, 40, 40, 40, 40, 50, 50]
- kernelDimPerLayerSubsampled = [[3,3,3], [3,3,3], [3,3,3], [3,3,3], [3,3,3], [3,3,3], [3,3,3], [3,3,3]]
- subsampleFactor = [[3,3,3], [5,5,5]]
- layersWithResidualConnSubsampled = [4,6,8]
- numberFMsPerLayerFC = [250, 250]
- kernelDimFor1stFcLayer = [3,3,3]
- layersWithResidualConnFC = [2]
- segmentsDimTrain = [37,37,37]
- segmentsDimVal = [17,17,17]
- segmentsDimInference = [45,45,45]
- dropoutRatesNormal = []
- dropoutRatesSubsampled = []
- dropoutRatesFc = [0.0, 0.5, 0.5]
- convWeightsInit = ["fanIn", 2]
- activationFunction = "prelu"
- rollAverageForBNOverThatManyBatches = 60
|