statUtils.py 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. #load required libraries
  2. import sys
  3. import os
  4. import SimpleITK
  5. import json
  6. #you should get nixSuite via git clone https://git0.fmf.uni-lj.si/studen/nixSuite.git
  7. #if you don't put it to $HOME/software/src/, you should update the path
  8. nixSuite=os.path.join(os.path.expanduser('~'),'software','src','nixSuite')
  9. sys.path.append(os.path.join(nixSuite,'wrapper'))
  10. import nixWrapper
  11. nixWrapper.loadLibrary('labkeyInterface')
  12. import labkeyInterface
  13. import labkeyDatabaseBrowser
  14. import labkeyFileBrowser
  15. def connectDB(server):
  16. #check connectivity. This checks the configuration in $HOME/.labkey/network.json,
  17. #where paths to certificates are stored
  18. net=labkeyInterface.labkeyInterface()
  19. fconfig=os.path.join(os.path.expanduser('~'),'.labkey','{}.json'.format(server))
  20. net.init(fconfig)
  21. #this reports the certificate used
  22. try:
  23. print('Using: {}'.format(net.connectionConfig['SSL']['user']))
  24. except KeyError:
  25. pass
  26. #This gets a deafult CSRF code; It should report user name plus a long string of random hex numbers
  27. net.getCSRF()
  28. db=labkeyDatabaseBrowser.labkeyDB(net)
  29. fb=labkeyFileBrowser.labkeyFileBrowser(net)
  30. return db,fb
  31. def getUsers(db,project):
  32. ds=db.selectRows(project,'core','Users',[])
  33. users={x['UserId']:x['DisplayName'] for x in ds['rows']}
  34. for u in users:
  35. print('{} {}'.format(u,users[u]))
  36. return users
  37. def getImage(setup, row, field, extraPath=None):
  38. fb=setup['fb']
  39. pathList=[setup['imageDir'],row['patientCode'],row['visitCode']]
  40. if extraPath!=None:
  41. pathList.append(extraPath)
  42. pathList.append(row[field])
  43. remotePath='/'.join(pathList)
  44. urlPath=fb.formatPathURL(setup['project'],remotePath)
  45. localPath=os.path.join(setup['localDir'],row[field])
  46. if os.path.isfile(localPath):
  47. print('{} done'.format(localPath))
  48. else:
  49. if not fb.entryExists(urlPath):
  50. print('No file {}'.format(urlPath))
  51. return "NONE"
  52. fb.readFileToFile(urlPath,localPath)
  53. return localPath
  54. def getSegmentations(setup,row):
  55. idField=setup['idField']
  56. visitField=setup['visitField']
  57. qFilter=[{'variable':x,'value':row[x],'oper':'eq'} for x in [idField,visitField]]
  58. dsSeg=setup['db'].selectRows(setup['project'],'study','Segmentations',qFilter)
  59. if len(dsSeg['rows'])<1:
  60. print('Failed to find segmentation for {}/{}'.format(row[idField],row[visitField]))
  61. return {0:"NONE"}
  62. return {r['User']:getImage(setup,r,'latestFile',extraPath='Segmentations') for r in dsSeg['rows']}
  63. def loadSetup(path):
  64. with open(path,'r') as f:
  65. setup=json.load(f)
  66. fC=[x for x in setup.keys() if x.find('Dir')>-1]
  67. for q in fC:
  68. setup[q]=setup[q].replace('_home_',os.path.expanduser('~'))
  69. return setup
  70. def getSegments(image):
  71. keys=image.GetMetaDataKeys()
  72. i=0
  73. ids={}
  74. while True:
  75. id='Segment{}_ID'.format(i)
  76. value='Segment{}_LabelValue'.format(i)
  77. try:
  78. ids[image.GetMetaData(id)]=int(image.GetMetaData(value))
  79. except RuntimeError:
  80. break
  81. i+=1
  82. return ids
  83. def getStats(image):
  84. print(image.GetSize())
  85. print(image.GetOrigin())
  86. print(image.GetSpacing())
  87. print(image.GetNumberOfComponentsPerPixel())
  88. def getSegmentStats(pet,seg,label):
  89. o=getComponents(seg,label)
  90. cc=o['image']
  91. shape_stats = SimpleITK.LabelShapeStatisticsImageFilter()
  92. #shape_stats.ComputeOrientedBoundingBoxOn()
  93. shape_stats.Execute(cc)
  94. intensity_stats = SimpleITK.LabelIntensityStatisticsImageFilter()
  95. intensity_stats.Execute(cc,pet)
  96. #output
  97. out=[(shape_stats.GetPhysicalSize(i),
  98. intensity_stats.GetMean(i),
  99. intensity_stats.GetStandardDeviation(i),
  100. intensity_stats.GetSkewness(i)) for i in shape_stats.GetLabels()]
  101. print(out)
  102. def getComponents(seg,label):
  103. cc=SimpleITK.Threshold(seg,lower=label,upper=label)
  104. ccFilter=SimpleITK.ConnectedComponentImageFilter()
  105. cc1=ccFilter.Execute(cc)
  106. return {'image':cc1, 'count':ccFilter.GetObjectCount()}
  107. def drop_array(v):
  108. return float(v)
  109. #if type(v) is numpy.ndarray:
  110. # return v[0]
  111. #return v
  112. def getSUVmax(vals):
  113. return drop_array(vals['original_firstorder_Maximum'])
  114. def getSUVmean(vals):
  115. return drop_array(vals['original_firstorder_Mean'])
  116. def getMTV(vals):
  117. try:
  118. return drop_array(vals['original_shape_MeshVolume'])
  119. except KeyError:
  120. return drop_array(vals['original_shape_VoxelVolume'])
  121. def getTLG(vals):
  122. V=vals['original_shape_VoxelVolume']
  123. return V*getSUVmean(vals)
  124. def getCOM(vals):
  125. return vals['diagnostics_Mask-original_CenterOfMassIndex']
  126. def getValue(vals,valueName):
  127. if valueName=='SUVmean':
  128. return getSUVmean(vals)
  129. if valueName=='SUVmax':
  130. return getSUVmax(vals)
  131. if valueName=='MTV':
  132. return getMTV(vals)
  133. if valueName=='TLG':
  134. return getTLG(vals)
  135. if valueName=='COM':
  136. return getCOM(vals)
  137. return 0
  138. def getRadiomicsStats(setup,pet,seg,label):
  139. o=getComponents(seg,label)
  140. cc=o['image']
  141. n=o['count']
  142. output={}
  143. for i in range(n):
  144. output[i]=getRadiomicsComponentStats(setup,pet,seg,label)
  145. return output
  146. def getRadiomicsComponentStats(setup,pet,cc,label):
  147. vals=setup['featureExtractor'].execute(pet,cc,label=label)
  148. output={x:getValue(vals,x) for x in setup['values']}
  149. #for v in vals:
  150. # print('{}: {}'.format(v,vals[v]))
  151. for c in output:
  152. print('{}: {}'.format(c,output[c]))
  153. return output
  154. def findMatchingComponent(o,a,b,label):
  155. statFilter=SimpleITK.StatisticsImageFilter()
  156. overlap_measures_filter = SimpleITK.LabelOverlapMeasuresImageFilter()
  157. print('{}: [{}]:{} [{}]:{}'.format(label,a,o[a]['count'],b,o[b]['count']))
  158. comps={v:{x+1:o[v]['image']==x+1 for x in range(o[v]['count'])} for v in [a,b]}
  159. stat={}
  160. for comp in comps:
  161. stat[comp]={}
  162. for x in comps[comp]:
  163. cc=comps[comp][x]
  164. statFilter.Execute(cc)
  165. stat[comp][x]={'sum':statFilter.GetSum()}
  166. for c in comps[a]:
  167. cc=comps[a][c]
  168. print('{}:{}'.format(c,stat[a][c]['sum']))
  169. for d in comps[b]:
  170. cc1=comps[b][d]
  171. overlap_measures_filter.Execute(cc, cc1)
  172. print('\t {}:{} {}'.format(d,stat[b][d]['sum'],overlap_measures_filter.GetDiceCoefficient()))
  173. def evaluateByLesions(pet,seg,ids):
  174. for id in ids:
  175. print('{}: {}'.format(id,ids[id]))
  176. o={x:getComponents(seg[x],ids[id]) for x in seg}
  177. a=segKeys[0]
  178. for x in segKeys[1:]:
  179. findMatchingComponent(o,a,x,ids[id])
  180. def updateDatasetRows(db,project,dataset,rows,filterVars=['ParticipantId','SequenceNum']):
  181. for r in rows:
  182. r['SequenceNum']+=0.01*r['segment']
  183. qFilter=[{'variable':x,'value':''.format(r[x]),'oper':'eq'} for x in filterVars]
  184. ds=db.selectRows(project,'study',dataset,qFilter)
  185. if len(ds['rows'])>0:
  186. row=ds['rows'][0]
  187. row.update({x:r[x] for x in r if x not in filterVars})
  188. db.modifyRows('update',project,'study',dataset,[row])
  189. else:
  190. db.modifyRows('insert',project,'study',dataset,[r])