|
@@ -0,0 +1,88 @@
|
|
|
+import numpy as np
|
|
|
+import scipy.sparse as sp
|
|
|
+
|
|
|
+def sys_matrix(nx, ny, nb, na, mask):
|
|
|
+#function G = Glinear(nx, ny, nb, na, mask)
|
|
|
+#
|
|
|
+# Generate a geometric system matrix for tomographic projection
|
|
|
+# based on simple linear interpolation.
|
|
|
+# Contains exactly two g_{ij}'s per pixel per projection angle.
|
|
|
+# This system model is pretty inadequate for reconstructing
|
|
|
+# real tomographic data, but is useful for simple simulations.
|
|
|
+#
|
|
|
+# The image size is nx * ny.
|
|
|
+# The sinogram size is nb * na (n_radial_bins X n_angles).
|
|
|
+# Returned G is [nb * na, nx * ny] - this size is need for wtfmex saving.
|
|
|
+#
|
|
|
+# Copyright Apr 2000, Jeff Fessler, University of Michigan
|
|
|
+
|
|
|
+#if nargin < 1, nx = 32; end
|
|
|
+#if nargin < 2, ny = nx; end
|
|
|
+#if nargin < 3, nb = nx; end
|
|
|
+#if nargin < 4, na = floor(nb * pi/2); end
|
|
|
+#if nargin < 5, mask = logical(ones(nx,ny)); end
|
|
|
+
|
|
|
+#
|
|
|
+# default: run a test demo
|
|
|
+#
|
|
|
+#if nargin < 1
|
|
|
+ #x = shepplogan(nx, ny, 1);
|
|
|
+ #ix = [-(nx-1)/2:(nx-1)/2]';
|
|
|
+ #iy = [-(ny-1)/2:(ny-1)/2];
|
|
|
+ #rr = sqrt(outer_sum(ix.^2, iy.^2));
|
|
|
+ #mask = rr < nx/2-1;
|
|
|
+ #clf
|
|
|
+ #G = Glinear(nx, ny, nb, na, mask);
|
|
|
+ #y = G * x(:); % forward projection
|
|
|
+ #y = reshape(y, nb, na); % reshape into sinogram array
|
|
|
+ #sino = zeros(nb, na); sino(nb/2, 10) = 1;
|
|
|
+ #b = reshape(G' * sino(:), nx, ny);
|
|
|
+ #im(221, mask, 'support mask')
|
|
|
+ #im(222, x, 'test image')
|
|
|
+ #im(223, y, 'sinogram'), xlabel ib, ylabel ia
|
|
|
+ #im(224, b, 'backproject 1 ray')
|
|
|
+#return
|
|
|
+#end
|
|
|
+
|
|
|
+#
|
|
|
+# pixel centers
|
|
|
+#
|
|
|
+ x,y = np.meshgrid(np.arange(0,nx)-(nx-1)/2., np.arange(0,ny)-(ny-1)/2.)
|
|
|
+ x = x[mask]
|
|
|
+ y = y[mask]
|
|
|
+ npts = len(x) # sum(mask(:)) - total # of support pixels
|
|
|
+
|
|
|
+ angle = np.arange(0,na) * (np.pi/na);
|
|
|
+# [na,np] projected pixel center
|
|
|
+ tau = np.outer(np.cos(angle),x) + np.outer(np.sin(angle), y)
|
|
|
+ tau += nb/2. # counting from 0 (python)
|
|
|
+ ibl = np.floor(tau).astype(int) # left bin
|
|
|
+ val = 1 - (tau-ibl) # weight value for left bin
|
|
|
+ #print(val)
|
|
|
+#ii is the absolute sinogram index (from 0 to na*np) in image space
|
|
|
+ ii = ibl + nb*np.outer(np.arange(0,na),np.ones(npts)).astype(int)
|
|
|
+
|
|
|
+ #good = ones ([na,npts])
|
|
|
+ good = np.logical_and(ibl > -1,ibl < nb) # within FOV cases
|
|
|
+ if not(good.any()):
|
|
|
+ print ('FOV too small')
|
|
|
+ return
|
|
|
+
|
|
|
+ #print(val[good])
|
|
|
+#np = sum(mask(:));
|
|
|
+#nc = np; jj = 1:np;
|
|
|
+# compact G
|
|
|
+ nc = nx * ny
|
|
|
+ jj = mask.ravel().nonzero()
|
|
|
+# all-column G
|
|
|
+ jj=np.outer(np.ones(na),jj).astype(int)
|
|
|
+
|
|
|
+#left bin
|
|
|
+ G1 = sp.csc_matrix((val[good],(ii[good],jj[good])),shape=[nb*na,nc])
|
|
|
+#right bin
|
|
|
+
|
|
|
+#redefine valid indices
|
|
|
+ good1 = (ibl > -2) & (ibl < nb-1) # within FOV cases, but shifted by one
|
|
|
+ G2 = sp.csc_matrix((1-val[good1],(ii[good1]+1,jj[good1])),shape=[nb*na,nc])
|
|
|
+
|
|
|
+ return G1 + G2
|