Преглед на файлове

First commit of linear regi

Luka преди 2 месеца
ревизия
03359ef4e3
променени са 1 файла, в които са добавени 225 реда и са изтрити 0 реда
  1. 225 0
      FirstTryLinear.txt

+ 225 - 0
FirstTryLinear.txt

@@ -0,0 +1,225 @@
+import os
+import numpy as np
+import scipy
+from scipy.spatial.distance import cdist
+from scipy.spatial.transform import Rotation as R
+import slicer
+from DICOMLib import DICOMUtils
+from collections import deque
+
+# Define a threshold for grouping nearby points (in voxel space)
+#distance_threshold = 4  # This can be adjusted based on your dataset
+
+# Function to group points that are close to each other
+def group_points(points, threshold):
+    grouped_points = []
+    while points:
+        point = points.pop()  # Take one point from the list
+        group = [point]  # Start a new group
+        
+        # Find all points close to this one
+        distances = cdist([point], points)  # Calculate distances from this point to others
+        close_points = [i for i, dist in enumerate(distances[0]) if dist < threshold]
+        
+        # Add the close points to the group
+        group.extend([points[i] for i in close_points])
+        
+        # Remove the grouped points from the list
+        points = [point for i, point in enumerate(points) if i not in close_points]
+        
+        # Add the group to the result
+        grouped_points.append(group)
+    
+    return grouped_points
+
+
+def region_growing(image_data, seed, intensity_threshold, max_distance):
+    dimensions = image_data.GetDimensions()
+    visited = set()
+    region = []
+    queue = deque([seed])
+
+    while queue:
+        x, y, z = queue.popleft()
+        if (x, y, z) in visited:
+            continue
+
+        visited.add((x, y, z))
+        voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0)
+        
+        if voxel_value >= intensity_threshold:
+            region.append((x, y, z))
+            # Add neighbors within bounds
+            for dx, dy, dz in [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]:
+                nx, ny, nz = x + dx, y + dy, z + dz
+                if 0 <= nx < dimensions[0] and 0 <= ny < dimensions[1] and 0 <= nz < dimensions[2]:
+                    if (nx, ny, nz) not in visited:
+                        queue.append((nx, ny, nz))
+
+    return region
+
+
+def detect_points_region_growing(volume_name, intensity_threshold=3000, x_min=90, x_max=380, y_min=190, y_max=380, z_min=80, z_max=120, max_distance=9, centroid_merge_threshold=5):
+    volume_node = slicer.util.getNode(volume_name)
+    if not volume_node:
+        raise RuntimeError(f"Volume {volume_name} not found.")
+    
+    image_data = volume_node.GetImageData()
+    matrix = vtk.vtkMatrix4x4()
+    volume_node.GetIJKToRASMatrix(matrix)
+
+    dimensions = image_data.GetDimensions()
+    detected_regions = []
+
+    # Check if it's CT or CBCT
+    is_cbct = "cbct" in volume_name.lower()
+
+    if is_cbct:
+        valid_x_min, valid_x_max = 0, dimensions[0] - 1
+        valid_y_min, valid_y_max = 0, dimensions[1] - 1
+        valid_z_min, valid_z_max = 0, dimensions[2] - 1
+    else:
+        valid_x_min, valid_x_max = max(x_min, 0), min(x_max, dimensions[0] - 1)
+        valid_y_min, valid_y_max = max(y_min, 0), min(y_max, dimensions[1] - 1)
+        valid_z_min, valid_z_max = max(z_min, 0), min(z_max, dimensions[2] - 1)
+
+    visited = set()
+
+    def grow_region(x, y, z):
+        if (x, y, z) in visited:
+            return None
+
+        voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0)
+        if voxel_value < intensity_threshold:
+            return None
+
+        region = region_growing(image_data, (x, y, z), intensity_threshold, max_distance=max_distance)
+        if region:
+            for point in region:
+                visited.add(tuple(point))
+            return region
+        return None
+
+    regions = []
+    for z in range(valid_z_min, valid_z_max + 1):
+        for y in range(valid_y_min, valid_y_max + 1):
+            for x in range(valid_x_min, valid_x_max + 1):
+                region = grow_region(x, y, z)
+                if region:
+                    regions.append(region)
+
+    # Collect centroids using intensity-weighted average
+    centroids = []
+    for region in regions:
+        points = np.array([matrix.MultiplyPoint([*point, 1])[:3] for point in region])
+        intensities = np.array([image_data.GetScalarComponentAsDouble(*point, 0) for point in region])
+        
+        if intensities.sum() > 0:
+            weighted_centroid = np.average(points, axis=0, weights=intensities)
+            max_intensity = intensities.max()
+            centroids.append((np.round(weighted_centroid, 2), max_intensity))
+
+    unique_centroids = []
+    for centroid, intensity in centroids:
+        if not any(np.linalg.norm(centroid - existing_centroid) < centroid_merge_threshold for existing_centroid, _ in unique_centroids):
+            unique_centroids.append((centroid, intensity))
+            
+    markups_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"Markers_{volume_name}")
+    for centroid, intensity in unique_centroids:
+        markups_node.AddControlPoint(*centroid)
+        #print(f"Detected Centroid (RAS): {centroid}, Max Intensity: {intensity}")
+
+    return unique_centroids
+
+def compute_rigid_transform(moving_points, fixed_points):
+    assert len(moving_points) == len(fixed_points), "Point lists must be the same length."
+
+    # Convert to numpy arrays
+    moving = np.array(moving_points)
+    fixed = np.array(fixed_points)
+
+    # Compute centroids
+    centroid_moving = np.mean(moving, axis=0)
+    centroid_fixed = np.mean(fixed, axis=0)
+
+    # Center the points
+    moving_centered = moving - centroid_moving
+    fixed_centered = fixed - centroid_fixed
+
+    # Compute covariance matrix
+    H = np.dot(moving_centered.T, fixed_centered)
+
+    # SVD decomposition
+    U, _, Vt = np.linalg.svd(H)
+    R_optimal = np.dot(Vt.T, U.T)
+
+    # Correct improper rotation (reflection)
+    if np.linalg.det(R_optimal) < 0:
+        Vt[-1, :] *= -1
+        R_optimal = np.dot(Vt.T, U.T)
+
+    # Compute translation
+    translation = centroid_fixed - np.dot(centroid_moving, R_optimal)
+
+    return R_optimal, translation
+
+def apply_transform(points, rotation_matrix, translation_vector):
+    points = np.array(points)
+    transformed_points = np.dot(points, rotation_matrix.T) + translation_vector
+    return transformed_points
+
+
+
+
+# Initialize lists and dictionary
+cbct_list = []
+ct_list = []
+volume_points_dict = {}
+
+# Process loaded volumes
+for volumeNode in slicer.util.getNodesByClass("vtkMRMLScalarVolumeNode"):
+    volumeName = volumeNode.GetName()
+    shNode = slicer.vtkMRMLSubjectHierarchyNode.GetSubjectHierarchyNode(slicer.mrmlScene)
+    imageItem = shNode.GetItemByDataNode(volumeNode)
+    
+    modality = shNode.GetItemAttribute(imageItem, 'DICOM.Modality')
+    #print(modality)
+    
+    # Check if the volume is loaded into the scene
+    if not slicer.mrmlScene.IsNodePresent(volumeNode):
+        print(f"Volume {volumeName} not present in the scene.")
+        continue
+    
+    # Determine scan type
+    if "cbct" in volumeName.lower():
+        cbct_list.append(volumeName)
+        scan_type = "CBCT"
+    else:
+        ct_list.append(volumeName)
+        scan_type = "CT"
+    
+    # Detect points using region growing
+    grouped_points = detect_points_region_growing(volumeName, intensity_threshold=3000)
+    volume_points_dict[(scan_type, volumeName)] = grouped_points
+
+# Print the results
+# print(f"\nCBCT Volumes: {cbct_list}")
+# print(f"CT Volumes: {ct_list}")
+# print("\nDetected Points by Volume:")
+# for (scan_type, vol_name), points in volume_points_dict.items():
+#     print(f"{scan_type} Volume '{vol_name}': {len(points)} points detected.")
+
+
+cbct_points = [centroid for centroid, _ in volume_points_dict[("CBCT", "CBCT1")]]  # Extract only centroids (coordinates)
+ct_points = [centroid for centroid, _ in volume_points_dict[("CT", "CT")]]  # Extract only centroids (coordinates)
+print("CBCT points: ", np.array(cbct_points))
+# Ensure we have enough points for registration
+if len(cbct_points) >= 3 and len(ct_points) >= 3:
+    rotation_matrix, translation_vector = compute_rigid_transform(cbct_points, ct_points)
+    transformed_cbct_points = apply_transform(cbct_points, rotation_matrix, translation_vector)
+
+    print("Optimal Rotation Matrix:\n", rotation_matrix)
+    print("Translation Vector:\n", translation_vector)
+    print("Transformed CBCT Points:\n", transformed_cbct_points)
+else:
+    print("Not enough points for registration.")