FirstTryLinear.txt 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225
  1. import os
  2. import numpy as np
  3. import scipy
  4. from scipy.spatial.distance import cdist
  5. from scipy.spatial.transform import Rotation as R
  6. import slicer
  7. from DICOMLib import DICOMUtils
  8. from collections import deque
  9. # Define a threshold for grouping nearby points (in voxel space)
  10. #distance_threshold = 4 # This can be adjusted based on your dataset
  11. # Function to group points that are close to each other
  12. def group_points(points, threshold):
  13. grouped_points = []
  14. while points:
  15. point = points.pop() # Take one point from the list
  16. group = [point] # Start a new group
  17. # Find all points close to this one
  18. distances = cdist([point], points) # Calculate distances from this point to others
  19. close_points = [i for i, dist in enumerate(distances[0]) if dist < threshold]
  20. # Add the close points to the group
  21. group.extend([points[i] for i in close_points])
  22. # Remove the grouped points from the list
  23. points = [point for i, point in enumerate(points) if i not in close_points]
  24. # Add the group to the result
  25. grouped_points.append(group)
  26. return grouped_points
  27. def region_growing(image_data, seed, intensity_threshold, max_distance):
  28. dimensions = image_data.GetDimensions()
  29. visited = set()
  30. region = []
  31. queue = deque([seed])
  32. while queue:
  33. x, y, z = queue.popleft()
  34. if (x, y, z) in visited:
  35. continue
  36. visited.add((x, y, z))
  37. voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0)
  38. if voxel_value >= intensity_threshold:
  39. region.append((x, y, z))
  40. # Add neighbors within bounds
  41. for dx, dy, dz in [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]:
  42. nx, ny, nz = x + dx, y + dy, z + dz
  43. if 0 <= nx < dimensions[0] and 0 <= ny < dimensions[1] and 0 <= nz < dimensions[2]:
  44. if (nx, ny, nz) not in visited:
  45. queue.append((nx, ny, nz))
  46. return region
  47. def detect_points_region_growing(volume_name, intensity_threshold=3000, x_min=90, x_max=380, y_min=190, y_max=380, z_min=80, z_max=120, max_distance=9, centroid_merge_threshold=5):
  48. volume_node = slicer.util.getNode(volume_name)
  49. if not volume_node:
  50. raise RuntimeError(f"Volume {volume_name} not found.")
  51. image_data = volume_node.GetImageData()
  52. matrix = vtk.vtkMatrix4x4()
  53. volume_node.GetIJKToRASMatrix(matrix)
  54. dimensions = image_data.GetDimensions()
  55. detected_regions = []
  56. # Check if it's CT or CBCT
  57. is_cbct = "cbct" in volume_name.lower()
  58. if is_cbct:
  59. valid_x_min, valid_x_max = 0, dimensions[0] - 1
  60. valid_y_min, valid_y_max = 0, dimensions[1] - 1
  61. valid_z_min, valid_z_max = 0, dimensions[2] - 1
  62. else:
  63. valid_x_min, valid_x_max = max(x_min, 0), min(x_max, dimensions[0] - 1)
  64. valid_y_min, valid_y_max = max(y_min, 0), min(y_max, dimensions[1] - 1)
  65. valid_z_min, valid_z_max = max(z_min, 0), min(z_max, dimensions[2] - 1)
  66. visited = set()
  67. def grow_region(x, y, z):
  68. if (x, y, z) in visited:
  69. return None
  70. voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0)
  71. if voxel_value < intensity_threshold:
  72. return None
  73. region = region_growing(image_data, (x, y, z), intensity_threshold, max_distance=max_distance)
  74. if region:
  75. for point in region:
  76. visited.add(tuple(point))
  77. return region
  78. return None
  79. regions = []
  80. for z in range(valid_z_min, valid_z_max + 1):
  81. for y in range(valid_y_min, valid_y_max + 1):
  82. for x in range(valid_x_min, valid_x_max + 1):
  83. region = grow_region(x, y, z)
  84. if region:
  85. regions.append(region)
  86. # Collect centroids using intensity-weighted average
  87. centroids = []
  88. for region in regions:
  89. points = np.array([matrix.MultiplyPoint([*point, 1])[:3] for point in region])
  90. intensities = np.array([image_data.GetScalarComponentAsDouble(*point, 0) for point in region])
  91. if intensities.sum() > 0:
  92. weighted_centroid = np.average(points, axis=0, weights=intensities)
  93. max_intensity = intensities.max()
  94. centroids.append((np.round(weighted_centroid, 2), max_intensity))
  95. unique_centroids = []
  96. for centroid, intensity in centroids:
  97. if not any(np.linalg.norm(centroid - existing_centroid) < centroid_merge_threshold for existing_centroid, _ in unique_centroids):
  98. unique_centroids.append((centroid, intensity))
  99. markups_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"Markers_{volume_name}")
  100. for centroid, intensity in unique_centroids:
  101. markups_node.AddControlPoint(*centroid)
  102. #print(f"Detected Centroid (RAS): {centroid}, Max Intensity: {intensity}")
  103. return unique_centroids
  104. def compute_rigid_transform(moving_points, fixed_points):
  105. assert len(moving_points) == len(fixed_points), "Point lists must be the same length."
  106. # Convert to numpy arrays
  107. moving = np.array(moving_points)
  108. fixed = np.array(fixed_points)
  109. # Compute centroids
  110. centroid_moving = np.mean(moving, axis=0)
  111. centroid_fixed = np.mean(fixed, axis=0)
  112. # Center the points
  113. moving_centered = moving - centroid_moving
  114. fixed_centered = fixed - centroid_fixed
  115. # Compute covariance matrix
  116. H = np.dot(moving_centered.T, fixed_centered)
  117. # SVD decomposition
  118. U, _, Vt = np.linalg.svd(H)
  119. R_optimal = np.dot(Vt.T, U.T)
  120. # Correct improper rotation (reflection)
  121. if np.linalg.det(R_optimal) < 0:
  122. Vt[-1, :] *= -1
  123. R_optimal = np.dot(Vt.T, U.T)
  124. # Compute translation
  125. translation = centroid_fixed - np.dot(centroid_moving, R_optimal)
  126. return R_optimal, translation
  127. def apply_transform(points, rotation_matrix, translation_vector):
  128. points = np.array(points)
  129. transformed_points = np.dot(points, rotation_matrix.T) + translation_vector
  130. return transformed_points
  131. # Initialize lists and dictionary
  132. cbct_list = []
  133. ct_list = []
  134. volume_points_dict = {}
  135. # Process loaded volumes
  136. for volumeNode in slicer.util.getNodesByClass("vtkMRMLScalarVolumeNode"):
  137. volumeName = volumeNode.GetName()
  138. shNode = slicer.vtkMRMLSubjectHierarchyNode.GetSubjectHierarchyNode(slicer.mrmlScene)
  139. imageItem = shNode.GetItemByDataNode(volumeNode)
  140. modality = shNode.GetItemAttribute(imageItem, 'DICOM.Modality')
  141. #print(modality)
  142. # Check if the volume is loaded into the scene
  143. if not slicer.mrmlScene.IsNodePresent(volumeNode):
  144. print(f"Volume {volumeName} not present in the scene.")
  145. continue
  146. # Determine scan type
  147. if "cbct" in volumeName.lower():
  148. cbct_list.append(volumeName)
  149. scan_type = "CBCT"
  150. else:
  151. ct_list.append(volumeName)
  152. scan_type = "CT"
  153. # Detect points using region growing
  154. grouped_points = detect_points_region_growing(volumeName, intensity_threshold=3000)
  155. volume_points_dict[(scan_type, volumeName)] = grouped_points
  156. # Print the results
  157. # print(f"\nCBCT Volumes: {cbct_list}")
  158. # print(f"CT Volumes: {ct_list}")
  159. # print("\nDetected Points by Volume:")
  160. # for (scan_type, vol_name), points in volume_points_dict.items():
  161. # print(f"{scan_type} Volume '{vol_name}': {len(points)} points detected.")
  162. cbct_points = [centroid for centroid, _ in volume_points_dict[("CBCT", "CBCT1")]] # Extract only centroids (coordinates)
  163. ct_points = [centroid for centroid, _ in volume_points_dict[("CT", "CT")]] # Extract only centroids (coordinates)
  164. print("CBCT points: ", np.array(cbct_points))
  165. # Ensure we have enough points for registration
  166. if len(cbct_points) >= 3 and len(ct_points) >= 3:
  167. rotation_matrix, translation_vector = compute_rigid_transform(cbct_points, ct_points)
  168. transformed_cbct_points = apply_transform(cbct_points, rotation_matrix, translation_vector)
  169. print("Optimal Rotation Matrix:\n", rotation_matrix)
  170. print("Translation Vector:\n", translation_vector)
  171. print("Transformed CBCT Points:\n", transformed_cbct_points)
  172. else:
  173. print("Not enough points for registration.")