123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787 |
- import os
- import numpy as np
- import scipy
- from scipy.spatial.distance import cdist
- from scipy.spatial.transform import Rotation as R
- import slicer
- from DICOMLib import DICOMUtils
- from collections import deque
- import vtk
- from slicer.ScriptedLoadableModule import *
- import qt
- import matplotlib.pyplot as plt
- import csv
- #exec(open("C:/Users/lkomar/Documents/Prostata/FirstTryRegister.py").read())
- class SeekTransformModule(ScriptedLoadableModule):
- """
- Module description shown in the module panel.
- """
- def __init__(self, parent):
- ScriptedLoadableModule.__init__(self, parent)
- self.parent.title = "Seek Transform module"
- self.parent.categories = ["Image Processing"]
- self.parent.contributors = ["Luka Komar (Onkološki Inštitut Ljubljana, Fakulteta za Matematiko in Fiziko Ljubljana)"]
- self.parent.helpText = "This module applies rigid transformations to CBCT volumes based on reference CT volumes."
- self.parent.acknowledgementText = "Supported by doc. Primož Peterlin & prof. Andrej Studen"
- class SeekTransformModuleWidget(ScriptedLoadableModuleWidget):
- """
- GUI of the module.
- """
- def setup(self):
- ScriptedLoadableModuleWidget.setup(self)
- # Dropdown menu za izbiro metode
- self.rotationMethodComboBox = qt.QComboBox()
- self.rotationMethodComboBox.addItems(["Kabsch", "Horn", "Iterative Closest Point (Kabsch)"])
- self.layout.addWidget(self.rotationMethodComboBox)
- # Checkboxi za transformacije
- self.rotationCheckBox = qt.QCheckBox("Rotation")
- self.rotationCheckBox.setChecked(True)
- self.layout.addWidget(self.rotationCheckBox)
- self.translationCheckBox = qt.QCheckBox("Translation")
- self.translationCheckBox.setChecked(True)
- self.layout.addWidget(self.translationCheckBox)
- self.scalingCheckBox = qt.QCheckBox("Scaling")
- self.scalingCheckBox.setChecked(True)
- self.layout.addWidget(self.scalingCheckBox)
-
- self.writefileCheckBox = qt.QCheckBox("Write distances to csv file")
- self.writefileCheckBox.setChecked(True)
- self.layout.addWidget(self.writefileCheckBox)
- # Load button
- self.applyButton = qt.QPushButton("Find markers and transform")
- self.applyButton.toolTip = "Finds markers, computes optimal rigid transform and applies it to CBCT volumes."
- self.applyButton.enabled = True
- self.layout.addWidget(self.applyButton)
- # Connect button to logic
- self.applyButton.connect('clicked(bool)', self.onApplyButton)
- self.layout.addStretch(1)
- def onApplyButton(self):
- logic = MyTransformModuleLogic()
- selectedMethod = self.rotationMethodComboBox.currentText # izberi metodo izračuna rotacije
- # Preberi stanje checkboxov
- applyRotation = self.rotationCheckBox.isChecked()
- applyTranslation = self.translationCheckBox.isChecked()
- applyScaling = self.scalingCheckBox.isChecked()
- writefilecheck = self.writefileCheckBox.isChecked()
- # Pokliči logiko z izbranimi nastavitvami
- logic.run(selectedMethod, applyRotation, applyTranslation, applyScaling, writefilecheck)
- class MyTransformModuleLogic(ScriptedLoadableModuleLogic):
- """
- Core logic of the module.
- """
-
-
- def run(self, selectedMethod, applyRotation, applyTranslation, applyScaling, writefilecheck):
- print("Calculating...")
-
- def group_points(points, threshold):
- # Function to group points that are close to each other
- grouped_points = []
- while points:
- point = points.pop() # Take one point from the list
- group = [point] # Start a new group
-
- # Find all points close to this one
- distances = cdist([point], points) # Calculate distances from this point to others
- close_points = [i for i, dist in enumerate(distances[0]) if dist < threshold]
-
- # Add the close points to the group
- group.extend([points[i] for i in close_points])
-
- # Remove the grouped points from the list
- points = [point for i, point in enumerate(points) if i not in close_points]
-
- # Add the group to the result
- grouped_points.append(group)
-
- return grouped_points
- def region_growing(image_data, seed, intensity_threshold, max_distance):
- dimensions = image_data.GetDimensions()
- visited = set()
- region = []
- queue = deque([seed])
- while queue:
- x, y, z = queue.popleft()
- if (x, y, z) in visited:
- continue
- visited.add((x, y, z))
- voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0)
-
- if voxel_value >= intensity_threshold:
- region.append((x, y, z))
- # Add neighbors within bounds
- for dx, dy, dz in [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]:
- nx, ny, nz = x + dx, y + dy, z + dz
- if 0 <= nx < dimensions[0] and 0 <= ny < dimensions[1] and 0 <= nz < dimensions[2]:
- if (nx, ny, nz) not in visited:
- queue.append((nx, ny, nz))
- return region
-
- def compute_optimal_scaling_per_axis(moving_points, fixed_points):
- """Computes optimal scaling factors for each axis (X, Y, Z) to align moving points (CBCT) to fixed points (CT).
- Args:
- moving_points (list of lists): List of (x, y, z) moving points (CBCT).
- fixed_points (list of lists): List of (x, y, z) fixed points (CT).
- Returns:
- tuple: Scaling factors (sx, sy, sz).
- """
- moving_points_np = np.array(moving_points)
- fixed_points_np = np.array(fixed_points)
- # Compute centroids
- centroid_moving = np.mean(moving_points_np, axis=0)
- centroid_fixed = np.mean(fixed_points_np, axis=0)
- # Compute absolute distances of each point from its centroid along each axis
- distances_moving = np.abs(moving_points_np - centroid_moving)
- distances_fixed = np.abs(fixed_points_np - centroid_fixed)
- # Compute scaling factors as the ratio of mean absolute distances per axis
- scale_factors = np.mean(distances_fixed, axis=0) / np.mean(distances_moving, axis=0)
- return tuple(scale_factors)
- def compute_scaling(cbct_points, scaling_factors):
- """Applies non-uniform scaling to CBCT points.
- Args:
- cbct_points (list of lists): List of (x, y, z) points.
- scaling_factors (tuple): Scaling factors (sx, sy, sz) for each axis.
- Returns:
- np.ndarray: Scaled CBCT points.
- """
- sx, sy, sz = scaling_factors # Extract scaling factors
- scaling_matrix = np.diag([sx, sy, sz]) # Create diagonal scaling matrix
- cbct_points_np = np.array(cbct_points) # Convert to numpy array
- scaled_points = cbct_points_np @ scaling_matrix.T # Apply scaling
- return scaled_points.tolist() # Convert back to list
- def compute_Kabsch_rotation(moving_points, fixed_points):
- """
- Computes the optimal rotation matrix to align moving_points to fixed_points.
-
- Parameters:
- moving_points (list or ndarray): List of points to be rotated CBCT
- fixed_points (list or ndarray): List of reference points CT
- Returns:
- ndarray: Optimal rotation matrix.
- """
- assert len(moving_points) == len(fixed_points), "Point lists must be the same length."
- # Convert to numpy arrays
- moving = np.array(moving_points)
- fixed = np.array(fixed_points)
- # Compute centroids
- centroid_moving = np.mean(moving, axis=0)
- centroid_fixed = np.mean(fixed, axis=0)
- # Center the points
- moving_centered = moving - centroid_moving
- fixed_centered = fixed - centroid_fixed
- # Compute covariance matrix
- H = np.dot(moving_centered.T, fixed_centered)
- # SVD decomposition
- U, _, Vt = np.linalg.svd(H)
- Rotate_optimal = np.dot(Vt.T, U.T)
- # Correct improper rotation (reflection)
- if np.linalg.det(Rotate_optimal) < 0:
- Vt[-1, :] *= -1
- Rotate_optimal = np.dot(Vt.T, U.T)
- return Rotate_optimal
- def compute_Horn_rotation(moving_points, fixed_points):
- """
- Computes the optimal rotation matrix using quaternions.
- Parameters:
- moving_points (list or ndarray): List of points to be rotated.
- fixed_points (list or ndarray): List of reference points.
- Returns:
- ndarray: Optimal rotation matrix.
- """
- assert len(moving_points) == len(fixed_points), "Point lists must be the same length."
-
- moving = np.array(moving_points)
- fixed = np.array(fixed_points)
-
- # Compute centroids
- centroid_moving = np.mean(moving, axis=0)
- centroid_fixed = np.mean(fixed, axis=0)
-
- # Center the points
- moving_centered = moving - centroid_moving
- fixed_centered = fixed - centroid_fixed
-
- # Construct the cross-dispersion matrix
- M = np.dot(moving_centered.T, fixed_centered)
-
- # Construct the N matrix for quaternion solution
- A = M - M.T
- delta = np.array([A[1, 2], A[2, 0], A[0, 1]])
- trace = np.trace(M)
-
- N = np.zeros((4, 4))
- N[0, 0] = trace
- N[1:, 0] = delta
- N[0, 1:] = delta
- N[1:, 1:] = M + M.T - np.eye(3) * trace
-
- # Compute the eigenvector corresponding to the maximum eigenvalue
- eigvals, eigvecs = np.linalg.eigh(N)
- q_optimal = eigvecs[:, np.argmax(eigvals)] # Optimal quaternion
-
- # Convert quaternion to rotation matrix
- w, x, y, z = q_optimal
- R = np.array([
- [1 - 2*(y**2 + z**2), 2*(x*y - z*w), 2*(x*z + y*w)],
- [2*(x*y + z*w), 1 - 2*(x**2 + z**2), 2*(y*z - x*w)],
- [2*(x*z - y*w), 2*(y*z + x*w), 1 - 2*(x**2 + y**2)]
- ])
-
- return R
- def icp_algorithm(moving_points, fixed_points, max_iterations=100, tolerance=1e-5):
- """
- Iterative Closest Point (ICP) algorithm to align moving_points to fixed_points.
-
- Parameters:
- moving_points (list or ndarray): List of points to be aligned.
- fixed_points (list or ndarray): List of reference points.
- max_iterations (int): Maximum number of iterations.
- tolerance (float): Convergence tolerance.
- Returns:
- ndarray: Transformed moving points.
- ndarray: Optimal rotation matrix.
- ndarray: Optimal translation vector.
- """
- # Convert to numpy arrays
- moving = np.array(moving_points)
- fixed = np.array(fixed_points)
- # Initialize transformation
- R = np.eye(3) # Identity matrix for rotation
- t = np.zeros(3) # Zero vector for translation
- prev_error = np.inf # Initialize previous error to a large value
- for iteration in range(max_iterations):
- # Step 1: Find the nearest neighbors (correspondences)
- distances = np.linalg.norm(moving[:, np.newaxis] - fixed, axis=2)
- nearest_indices = np.argmin(distances, axis=1)
- nearest_points = fixed[nearest_indices]
- # Step 2: Compute the optimal rotation and translation
- R_new = compute_Kabsch_rotation(moving, nearest_points)
- centroid_moving = np.mean(moving, axis=0)
- centroid_fixed = np.mean(nearest_points, axis=0)
- t_new = centroid_fixed - np.dot(R_new, centroid_moving)
- # Step 3: Apply the transformation
- moving = np.dot(moving, R_new.T) + t_new
- # Update the cumulative transformation
- R = np.dot(R_new, R)
- t = np.dot(R_new, t) + t_new
- # Step 4: Check for convergence
- mean_error = np.mean(np.linalg.norm(moving - nearest_points, axis=1))
- if np.abs(prev_error - mean_error) < tolerance:
- print(f"ICP converged after {iteration + 1} iterations.")
- break
- prev_error = mean_error
- else:
- print(f"ICP reached maximum iterations ({max_iterations}).")
- return moving, R, t
- def compute_translation(moving_points, fixed_points, rotation_matrix):
- """
- Computes the translation vector to align moving_points to fixed_points given a rotation matrix.
-
- Parameters:
- moving_points (list or ndarray): List of points to be translated.
- fixed_points (list or ndarray): List of reference points.
- rotation_matrix (ndarray): Rotation matrix.
- Returns:
- ndarray: Translation vector.
- """
- # Convert to numpy arrays
- moving = np.array(moving_points)
- fixed = np.array(fixed_points)
- # Compute centroids
- centroid_moving = np.mean(moving, axis=0)
- centroid_fixed = np.mean(fixed, axis=0)
- # Compute translation
- translation = centroid_fixed - np.dot(centroid_moving, rotation_matrix)
- return translation
- def create_vtk_transform(rotation_matrix, translation_vector):
- """
- Creates a vtkTransform from a rotation matrix and a translation vector.
- """
- # Create a 4x4 transformation matrix
- transform_matrix = np.eye(4) # Start with an identity matrix
- transform_matrix[:3, :3] = rotation_matrix # Set rotation part
- transform_matrix[:3, 3] = translation_vector # Set translation part
- # Convert to vtkMatrix4x4
- vtk_matrix = vtk.vtkMatrix4x4()
- for i in range(4):
- for j in range(4):
- vtk_matrix.SetElement(i, j, transform_matrix[i, j])
- #print("Transform matrix:")
- #for i in range(4):
- # print(" ".join(f"{vtk_matrix.GetElement(i, j):.6f}" for j in range(4)))
- # Create vtkTransform and set the matrix
- transform = vtk.vtkTransform()
- transform.SetMatrix(vtk_matrix)
- return transform
-
-
- def detect_points_region_growing(volume_name, yesCbct, intensity_threshold=3000, x_min=90, x_max=380, y_min=190, y_max=380, z_min=80, z_max=140, max_distance=9, centroid_merge_threshold=5):
- volume_node = slicer.util.getNode(volume_name)
- if not volume_node:
- raise RuntimeError(f"Volume {volume_name} not found.")
-
- image_data = volume_node.GetImageData()
- matrix = vtk.vtkMatrix4x4()
- volume_node.GetIJKToRASMatrix(matrix)
- dimensions = image_data.GetDimensions()
- #detected_regions = []
- if yesCbct: #je cbct ali ct?
- valid_x_min, valid_x_max = 0, dimensions[0] - 1
- valid_y_min, valid_y_max = 0, dimensions[1] - 1
- valid_z_min, valid_z_max = 0, dimensions[2] - 1
- else:
- valid_x_min, valid_x_max = max(x_min, 0), min(x_max, dimensions[0] - 1)
- valid_y_min, valid_y_max = max(y_min, 0), min(y_max, dimensions[1] - 1)
- valid_z_min, valid_z_max = max(z_min, 0), min(z_max, dimensions[2] - 1)
- visited = set()
- def grow_region(x, y, z):
- if (x, y, z) in visited:
- return None
- voxel_value = image_data.GetScalarComponentAsDouble(x, y, z, 0)
- if voxel_value < intensity_threshold:
- return None
- region = region_growing(image_data, (x, y, z), intensity_threshold, max_distance=max_distance)
- if region:
- for point in region:
- visited.add(tuple(point))
- return region
- return None
- regions = []
- for z in range(valid_z_min, valid_z_max + 1):
- for y in range(valid_y_min, valid_y_max + 1):
- for x in range(valid_x_min, valid_x_max + 1):
- region = grow_region(x, y, z)
- if region:
- regions.append(region)
- # Collect centroids using intensity-weighted average
- centroids = []
- for region in regions:
- points = np.array([matrix.MultiplyPoint([*point, 1])[:3] for point in region])
- intensities = np.array([image_data.GetScalarComponentAsDouble(*point, 0) for point in region])
-
- if intensities.sum() > 0:
- weighted_centroid = np.average(points, axis=0, weights=intensities)
- max_intensity = intensities.max()
- centroids.append((np.round(weighted_centroid, 2), max_intensity))
- unique_centroids = []
- for centroid, intensity in centroids:
- if not any(np.linalg.norm(centroid - existing_centroid) < centroid_merge_threshold for existing_centroid, _ in unique_centroids):
- unique_centroids.append((centroid, intensity))
-
- markups_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"Markers_{volume_name}")
- for centroid, intensity in unique_centroids:
- markups_node.AddControlPoint(*centroid)
- markups_node.SetDisplayVisibility(False)
- #print(f"Detected Centroid (RAS): {centroid}, Max Intensity: {intensity}")
- return unique_centroids
- def find_table_top_z(ct_volume_name, writefilecheck, yesCbct):
- """
- Najde višino zgornjega roba mize v CT/CBCT volumnu in doda markerje.
-
- :param ct_volume_name: Ime volumna v slicerju
- :param writefilecheck: Če je True, zapiše rezultat v CSV
- :param yesCbct: Če je True, uporabi CBCT thresholde
- :return: Višina zgornjega roba mize v mm
- """
- # Pridobi volumen
- ct_volume_node = slicer.util.getNode(ct_volume_name)
- image_data = ct_volume_node.GetImageData()
- spacing = ct_volume_node.GetSpacing()
- dims = image_data.GetDimensions()
- #origin = ct_volume_node.GetOrigin()
- # Pretvori volumen v numpy array
- np_array = slicer.util.arrayFromVolume(ct_volume_node)
- # Izračunaj sredinske IJK koordinate
- mid_ijk = [dims[0] // 2, dims[1] // 2, dims[2] // 2]
- # Preveri, da so IJK indeksi v mejah volumna
- mid_ijk = [max(0, min(dims[i] - 1, mid_ijk[i])) for i in range(3)]
- # Pretvorba IJK → RAS
- ijkToRasMatrix = vtk.vtkMatrix4x4()
- ct_volume_node.GetIJKToRASMatrix(ijkToRasMatrix)
- #mid_ras = np.array(ijkToRasMatrix.MultiplyPoint([*mid_ijk, 1]))[:3]
- # Sredinski Z slice
- mid_z_voxel = mid_ijk[2]
- slice_data = np_array[mid_z_voxel, :, :] # (Y, X)
- # Sredinski stolpec
- mid_x_voxel = mid_ijk[0] - 15 # 15 pikslov levo od sredine da ne merimo pri hrbtenici
- column_values = slice_data[:, mid_x_voxel] # Y smer
- # Doda marker v RAS koordinatah
- #mid_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"Sredina_{ct_volume_name}")
- #mid_node.AddControlPoint(mid_ras)
- # Določi threshold glede na CBCT ali CT
- threshold = -300 if yesCbct else -100 # če je cbct iščemo vrednost -300, sicer pri CT 0
- # Poišči rob mize (drugi dvig)
- previous_value = -1000
- edge_count = 0
- table_top_y = None
- min_jump = 100 if yesCbct else 50 # Minimalni skok za CBCT in CT
- for y in range(len(column_values) - 1, -1, -1): # Od spodaj navzgor
- intensity = column_values[y]
- #if column_values[y] > threshold and previous_value <= threshold:
- if (intensity - previous_value) > min_jump and intensity > threshold: # Namesto primerjave s threshold
- if yesCbct:
- table_top_y = y + 1 #Da nismo že v trupu
- #print(f"Zgornji rob mize najden pri Y = {table_top_y}") # CBCT
- break
- if edge_count == 0 or (edge_count == 1 and previous_value < -200): # Check if intensity is back lower than -400
- edge_count += 1
- #print(f"Zaznan rob mize pri X, Y, Z = {mid_x_voxel},{y}, {mid_z_voxel}")
- if edge_count == 2: # Drugi dvig = zgornji rob mize
- table_top_y = y + 1
- #print(f"Zgornji rob mize najden pri Y = {table_top_y}")
- break
- previous_value = column_values[y]
- if table_top_y is None:
- print("❌ Zgornji rob mize ni bil najden!")
- return None
- # Pretvorba Y IJK → RAS
- table_ijk = [mid_x_voxel, table_top_y, mid_z_voxel]
- table_ras = np.array(ijkToRasMatrix.MultiplyPoint([*table_ijk, 1]))[:3]
- # Doda marker za višino mize
- table_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLMarkupsFiducialNode", f"VišinaMize_{ct_volume_name}")
- table_node.AddControlPoint(table_ras)
- table_node.SetDisplayVisibility(False)
- # Izračun višine v mm
- image_center_y = dims[1] // 2
- pixel_offset = table_top_y - image_center_y
- mm_offset = pixel_offset * spacing[1]
- #print(f"📏 Miza je {abs(mm_offset):.2f} mm {'nižja' if mm_offset > 0 else 'višja'} od središča.")
- #print(f"📏 Miza je {abs(pixel_offset)} pixel {'nižja' if pixel_offset > 0 else 'višja'} od središča.")
- # Shrani v CSV
- if writefilecheck:
- file_path = os.path.join(os.path.dirname(__file__), "heightdata.csv")
- with open(file_path, mode='a', newline='') as file:
- writer = csv.writer(file)
- modality = "CBCT " if yesCbct else "CT "
- writer.writerow([modality, ct_volume_name, f" Upper part of table detected at Z = {mm_offset:.2f} mm, {pixel_offset} pixels"])
- return mm_offset, pixel_offset
-
-
- # Globalni seznami za končno statistiko
- prostate_size_est = []
- ctcbct_distance = []
- # Pridobimo SubjectHierarchyNode
- shNode = slicer.vtkMRMLSubjectHierarchyNode.GetSubjectHierarchyNode(slicer.mrmlScene)
-
- studyItems = vtk.vtkIdList()
- shNode.GetItemChildren(shNode.GetSceneItemID(), studyItems)
- for i in range(studyItems.GetNumberOfIds()):
- studyItem = studyItems.GetId(i)
-
- # **LOKALNI** seznami, resetirajo se pri vsakem study-ju
- cbct_list = []
- ct_list = []
- volume_points_dict = {}
- CT_offset = 0
- # Get child items of the study item
- volumeItems = vtk.vtkIdList()
- shNode.GetItemChildren(studyItem, volumeItems)
-
- # Iteracija čez vse volumne v posameznem studyju
- for j in range(volumeItems.GetNumberOfIds()):
- intermediateItem = volumeItems.GetId(j)
- finalVolumeItems = vtk.vtkIdList()
- shNode.GetItemChildren(intermediateItem, finalVolumeItems) # Išči globlje!
- for k in range(finalVolumeItems.GetNumberOfIds()):
- volumeItem = finalVolumeItems.GetId(k)
- volumeNode = shNode.GetItemDataNode(volumeItem)
-
- dicomUIDs = volumeNode.GetAttribute("DICOM.instanceUIDs")
- if not dicomUIDs:
- print("❌ This is an NRRD volume!")
- continue # Preskoči, če ni DICOM volume
-
-
-
-
- volumeName = volumeNode.GetName()
- imageItem = shNode.GetItemByDataNode(volumeNode)
- modality = shNode.GetItemAttribute(imageItem, "DICOM.Modality") #deluje!
- #dimensions = volumeNode.GetImageData().GetDimensions()
- #spacing = volumeNode.GetSpacing()
- #print(f"Volume {volumeNode.GetName()} - Dimenzije: {dimensions}, Spacing: {spacing}")
- if modality != "CT":
- print("Not a CT")
- continue # Preskoči, če ni CT
-
- # Preveri, če volume obstaja v sceni
- if not slicer.mrmlScene.IsNodePresent(volumeNode):
- print(f"Volume {volumeName} not present in the scene.")
- continue
- # Preverimo proizvajalca (DICOM metapodatki)
- manufacturer = shNode.GetItemAttribute(imageItem, 'DICOM.Manufacturer')
- #manufacturer = volumeNode.GetAttribute("DICOM.Manufacturer")
- #manufacturer = slicer.dicomDatabase.fileValue(uid, "0008,0070")
- #print(manufacturer)
-
- # Določimo, ali gre za CBCT ali CT
- if "varian" in manufacturer.lower() or "elekta" in manufacturer.lower():
- cbct_list.append(volumeName)
- scan_type = "CBCT"
- yesCbct = True
- else: # Siemens ali Philips
- ct_list.append(volumeName)
- scan_type = "CT"
- yesCbct = False
- if volumeNode and volumeNode.IsA("vtkMRMLScalarVolumeNode"):
- print(f"✔️ {scan_type} {volumeNode.GetName()} (ID: {volumeItem})")
-
- if not volumeNode or not volumeNode.IsA("vtkMRMLScalarVolumeNode"):
- print("Can't find volumeNode")
- #continue # Preskoči, če ni veljaven volume
-
- mm_offset, pixel_offset = find_table_top_z(volumeName, writefilecheck, yesCbct)
-
- if scan_type == "CT":
- CT_offset = pixel_offset #Določi koliko je višina CT slike od središča
- else:
- # Poravnava CBCT z višino CT
- CBCT_offset = pixel_offset
- alignment_offset = CT_offset - CBCT_offset
- print(f"Poravnavam CBCT z CT. Offset: {alignment_offset}")
- # Uporabi alignment_offset za premik CBCT
- transform = vtk.vtkTransform()
- transform.Translate(0, alignment_offset, 0) # Premik samo po y-osi (višina)
-
- #transformacija volumna oziroma poravnava po višini
- transformNode = slicer.vtkMRMLTransformNode()
- slicer.mrmlScene.AddNode(transformNode)
- transformNode.SetAndObserveTransformToParent(transform)
- volumeNode.SetAndObserveTransformNodeID(transformNode.GetID()) # Prilepi transformacijo na CBCT
- slicer.mrmlScene.RemoveNode(transformNode) # Odstrani transformacijo iz scene
-
-
- # Detekcija točk v volumnu
- grouped_points = detect_points_region_growing(volumeName, yesCbct, intensity_threshold=3000)
- #print(f"Populating volume_points_dict with key ('{scan_type}', '{volumeName}')")
- volume_points_dict[(scan_type, volumeName)] = grouped_points
- #print(volume_points_dict) # Check if the key is correctly added
- # Če imamo oba tipa volumna (CBCT in CT) **znotraj istega studyja**
- if cbct_list and ct_list:
- ct_volume_name = ct_list[0] # Uporabi prvi CT kot referenco
- print(f"\nProcessing CT: {ct_volume_name}")
- #yesCbct = False
-
-
- ct_points = [centroid for centroid, _ in volume_points_dict[("CT", ct_volume_name)]]
- if len(ct_points) < 3:
- print(f"CT volume {ct_volume_name} doesn't have enough points for registration.")
- else:
- for cbct_volume_name in cbct_list:
- print(f"\nProcessing CBCT Volume: {cbct_volume_name}")
- #yesCbct = True
- cbct_points = [centroid for centroid, _ in volume_points_dict[("CBCT", cbct_volume_name)]]
-
- #find_table_top_z(cbct_volume_name, writefilecheck, yesCbct)
- if len(cbct_points) < 3:
- print(f"CBCT Volume '{cbct_volume_name}' doesn't have enough points for registration.")
- continue
- # Shranjevanje razdalj
- distances_ct_cbct = []
- distances_internal = {"A-B": [], "B-C": [], "C-A": []}
- cbct_points_array = np.array(cbct_points) # Pretvorba v numpy array
- ct_volume_node = slicer.util.getNode(ct_volume_name)
- cbct_volume_node = slicer.util.getNode(cbct_volume_name)
- #ct_spacing = ct_volume_node.GetSpacing() # (x_spacing, y_spacing, z_spacing)
- #cbct_spacing = cbct_volume_node.GetSpacing() # (x_spacing, y_spacing, z_spacing)
-
- #ct_scale_factor = np.array(ct_spacing) # Spacing za CT (x, y, z)
- #cbct_scale_factor = np.array(cbct_spacing) # Spacing za CBCT (x, y, z)
- #print(ct_scale_factor, cbct_scale_factor)
-
- # Sortiramo točke po Z-koordinati (ali X/Y, če raje uporabljaš drugo os)
- cbct_points_sorted = cbct_points_array[np.argsort(cbct_points_array[:, 2])]
- # Razdalje med CT in CBCT (SORTIRANE točke!)
- d_ct_cbct = np.linalg.norm(cbct_points_sorted - ct_points, axis=1)
- distances_ct_cbct.append(d_ct_cbct)
- # Razdalje med točkami znotraj SORTIRANIH cbct_points
- d_ab = np.linalg.norm(cbct_points_sorted[0] - cbct_points_sorted[1])
- d_bc = np.linalg.norm(cbct_points_sorted[1] - cbct_points_sorted[2])
- d_ca = np.linalg.norm(cbct_points_sorted[2] - cbct_points_sorted[0])
- # Sortiramo razdalje po velikosti, da so vedno v enakem vrstnem redu
- sorted_distances = sorted([d_ab, d_bc, d_ca])
- distances_internal["A-B"].append(sorted_distances[0])
- distances_internal["B-C"].append(sorted_distances[1])
- distances_internal["C-A"].append(sorted_distances[2])
-
- # Dodamo ime študije za v statistiko
- studyName = shNode.GetItemName(studyItem)
-
- # **Shrani razdalje v globalne sezname**
- prostate_size_est.append({"Study": studyName, "Distances": sorted_distances})
- ctcbct_distance.append({"Study": studyName, "Distances": list(distances_ct_cbct[-1])}) # Pretvorimo v seznam
- # Izberi metodo glede na uporabnikov izbor
- chosen_rotation_matrix = np.eye(3)
- chosen_translation_vector = np.zeros(3)
- if applyScaling:
- scaling_factors = compute_optimal_scaling_per_axis(cbct_points, ct_points)
- print("Scaling factors: ", scaling_factors)
- cbct_points = compute_scaling(cbct_points, scaling_factors)
- if applyRotation:
- if selectedMethod == "Kabsch":
- chosen_rotation_matrix = compute_Kabsch_rotation(cbct_points, ct_points)
- elif selectedMethod == "Horn":
- chosen_rotation_matrix = compute_Horn_rotation(cbct_points, ct_points)
- elif selectedMethod == "Iterative Closest Point (Kabsch)":
- _, chosen_rotation_matrix, _ = icp_algorithm(cbct_points, ct_points)
- print("Rotation Matrix:\n", chosen_rotation_matrix)
- if applyTranslation:
- chosen_translation_vector = compute_translation(cbct_points, ct_points, chosen_rotation_matrix)
- print("Translation Vector:\n", chosen_translation_vector)
- # Ustvari vtkTransformNode in ga poveži z CBCT volumenom
- imeTransformNoda = cbct_volume_name + " Transform"
- transform_node = slicer.mrmlScene.AddNewNodeByClass("vtkMRMLTransformNode", imeTransformNoda)
- # Kreiraj transformacijo in jo uporabi
- vtk_transform = create_vtk_transform(chosen_rotation_matrix, chosen_translation_vector)
- transform_node.SetAndObserveTransformToParent(vtk_transform)
- # Pridobi CBCT volumen in aplikacijo transformacije
- cbct_volume_node = slicer.util.getNode(cbct_volume_name)
- cbct_volume_node.SetAndObserveTransformNodeID(transform_node.GetID())
- # Uporabi transformacijo na volumnu (fizična aplikacija)
- slicer.vtkSlicerTransformLogic().hardenTransform(cbct_volume_node) #aplicira transformacijo na volumnu
- slicer.mrmlScene.RemoveNode(transform_node) # Odstrani transformacijo iz scene
- print("Transform successful on ", cbct_volume_name)
- else:
- print(f"Study {studyItem} doesn't have any appropriate CT or CBCT volumes.")
- # Izpis globalne statistike
-
-
- if(writefilecheck):
- print("Distances between CT & CBCT markers: ", ctcbct_distance)
- print("Distances between pairs of markers for each volume: ", prostate_size_est)
- # Define the file path for the CSV file
- file_path = os.path.join(os.path.dirname(__file__), "study_data.csv")
- # Write lists to the CSV file
- with open(file_path, mode='w', newline='') as file: #w za write, a za append
- writer = csv.writer(file)
- # Write headers
- writer.writerow(["Prostate Size", "CT-CBCT Distance"])
- # Write data rows
- for i in range(len(prostate_size_est)):
- writer.writerow([prostate_size_est[i], ctcbct_distance[i]])
- print("File written at ", file_path)
|