|
@@ -1,19 +1,23 @@
|
|
|
import expansion
|
|
|
+import parameters
|
|
|
import functions as fn
|
|
|
import numpy as np
|
|
|
+from py3nj import wigner3j
|
|
|
+import time
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
Array = np.ndarray
|
|
|
Expansion = expansion.Expansion
|
|
|
+ModelParams = parameters.ModelParams
|
|
|
|
|
|
|
|
|
-def prefactor(R: float, kappaR: float, c0: float):
|
|
|
- return R * kappaR * 1e4 / (12.04 * c0)
|
|
|
-
|
|
|
-
|
|
|
-def c0(R: float, kappaR: float):
|
|
|
- return 10 * kappaR ** 2 / (0.329 ** 2 * R ** 2)
|
|
|
+# def prefactor(R: float, kappaR: float, c0: float):
|
|
|
+# return R * kappaR * 1e4 / (12.04 * c0)
|
|
|
+#
|
|
|
+#
|
|
|
+# def c0(R: float, kappaR: float):
|
|
|
+# return 10 * kappaR ** 2 / (0.329 ** 2 * R ** 2)
|
|
|
|
|
|
|
|
|
def expansions_to_common_l(ex1: Expansion, ex2: expansion) -> (Expansion, Expansion):
|
|
@@ -31,61 +35,78 @@ def expansions_to_common_l(ex1: Expansion, ex2: expansion) -> (Expansion, Expans
|
|
|
bool1 = (full_l_array1[:, None] - missing_l1[None, :]) > 0
|
|
|
bool2 = (full_l_array2[:, None] - missing_l2[None, :]) > 0
|
|
|
|
|
|
- # we set last element to True so that argmax returns last idx if all missing l > max_l
|
|
|
- bool1[-1, :] = True
|
|
|
- bool2[-1, :] = True
|
|
|
-
|
|
|
- indices1 = np.argmax(bool1, axis=0)
|
|
|
- indices2 = np.argmax(bool2, axis=0)
|
|
|
+ # if all elements of bool are false, i.e. missing_l > all existing_l, additional l values come to the end
|
|
|
+ indices1 = np.where(np.any(bool1, axis=0), np.argmax(bool1, axis=0), full_l_array1.shape[0])
|
|
|
+ indices2 = np.where(np.any(bool2, axis=0), np.argmax(bool2, axis=0), full_l_array2.shape[0])
|
|
|
|
|
|
new_coeffs1 = np.insert(ex1.coeffs, np.repeat(indices1, 2 * missing_l1 + 1), fill_1)
|
|
|
new_coeffs2 = np.insert(ex2.coeffs, np.repeat(indices2, 2 * missing_l2 + 1), fill_2)
|
|
|
|
|
|
- assert len(new_coeffs1) == len(new_coeffs2)
|
|
|
-
|
|
|
return Expansion(common_l_array, new_coeffs1), Expansion(common_l_array, new_coeffs2)
|
|
|
|
|
|
|
|
|
-def charged_shell_energy(ex1: Expansion, ex2: Expansion, dist: float, kappaR: float, R: float):
|
|
|
+def charged_shell_energy(ex1: Expansion, ex2: Expansion, dist: float, params: ModelParams):
|
|
|
|
|
|
ex1, ex2 = expansions_to_common_l(ex1, ex2)
|
|
|
|
|
|
full_l_array, full_m_array = ex1.lm_arrays
|
|
|
|
|
|
- coefficient_C = fn.interaction_coeff_C(ex1.l_array[:, None], ex2.l_array[None, :], kappaR)
|
|
|
+ coefficient_C = fn.interaction_coeff_C(ex1.l_array[:, None], ex2.l_array[None, :], params.kappaR)
|
|
|
full_coefficient_C = ex1.repeat_over_m(ex2.repeat_over_m(coefficient_C, axis=1), axis=0)
|
|
|
|
|
|
- indices, _ = np.nonzero(full_m_array[:, None] == full_m_array[None, :])
|
|
|
+ charge_factor = np.real(ex1.coeffs[:, None] * np.conj(ex2.coeffs[None, :]) +
|
|
|
+ (-1) ** (full_l_array[:, None] + full_l_array[None, :])
|
|
|
+ * ex1.coeffs[None, :] * ex1.coeffs[:, None])
|
|
|
|
|
|
- flat_l = full_l_array[indices]
|
|
|
- flat_m = full_m_array[indices]
|
|
|
+ indices_l, indices_p = np.nonzero(full_m_array[:, None] == full_m_array[None, :])
|
|
|
+ flat_l = full_l_array[indices_l]
|
|
|
+ flat_p = full_l_array[indices_p]
|
|
|
+ flat_m = full_m_array[indices_l] # the same as full_m_array[indices_p]
|
|
|
|
|
|
- flat_C = full_coefficient_C[indices1, indices2]
|
|
|
+ all_s_array = np.arange(2 * ex1.max_l + 1)
|
|
|
+ bessels = fn.sph_bessel_k(all_s_array, params.kappa * dist)
|
|
|
|
|
|
- flat_sigma1 = ex1.coeffs[indices1]
|
|
|
- flat_sigma2 = ex2.coeffs[indices2]
|
|
|
+ s_bool1 = np.abs(flat_l[:, None] - all_s_array[None, :]) <= flat_p[:, None]
|
|
|
+ s_bool2 = flat_p[:, None] <= (flat_l[:, None] + all_s_array[None, :])
|
|
|
+ indices_lpm, indices_s = np.nonzero(s_bool1 * s_bool2)
|
|
|
|
|
|
- # charge_factor = -1 ** (flat_l + flat_m) * np.real(flat_sigma1 * np.conj(flat_sigma2) + (-1) ** (flat_l + flat_p) * )
|
|
|
+ l_vals = flat_l[indices_lpm]
|
|
|
+ p_vals = flat_p[indices_lpm]
|
|
|
+ m_vals = flat_m[indices_lpm]
|
|
|
+ C_vals = full_coefficient_C[indices_l, indices_p][indices_lpm]
|
|
|
+ charge_vals = charge_factor[indices_l, indices_p][indices_lpm]
|
|
|
+ s_vals = all_s_array[indices_s]
|
|
|
+ bessel_vals = bessels[indices_s]
|
|
|
|
|
|
- return
|
|
|
+ lps_terms = (2 * s_vals + 1) * np.sqrt((2 * l_vals + 1) * (2 * p_vals + 1))
|
|
|
|
|
|
+ wigner1 = wigner3j(l_vals, s_vals, p_vals,
|
|
|
+ 0, 0, 0)
|
|
|
+ wigner2 = wigner3j(l_vals, s_vals, p_vals,
|
|
|
+ -m_vals, 0, m_vals)
|
|
|
+
|
|
|
+ return (params.R ** 2 / (params.kappa * params.epsilon * params.epsilon0)
|
|
|
+ * np.sum(C_vals * (-1) ** (l_vals + m_vals) * charge_vals * lps_terms * bessel_vals * wigner1 * wigner2))
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
|
- kappaR = 3
|
|
|
- R = 150
|
|
|
- ex1 = expansion.MappedExpansion(1, kappaR, 0.001, max_l=10)
|
|
|
- ex2 = expansion.MappedExpansion(1, kappaR, 0.001, max_l=5)
|
|
|
+ params = ModelParams(1, 3, 1, 1)
|
|
|
+ ex1 = expansion.MappedExpansion(1, params.kappaR, 0.001, max_l=5)
|
|
|
+ ex2 = expansion.MappedExpansion(1, params.kappaR, 0.001, max_l=5)
|
|
|
|
|
|
dist = 2.
|
|
|
|
|
|
- ex1, ex2 = expansions_to_common_l(ex1, ex2)
|
|
|
- print(ex1.coeffs)
|
|
|
- print(ex2.coeffs)
|
|
|
+ # ex1, ex2 = expansions_to_common_l(ex1, ex2)
|
|
|
+ # print(ex1.coeffs)
|
|
|
+ # print(ex2.coeffs)
|
|
|
+
|
|
|
+ t0 = time.perf_counter()
|
|
|
+ energy = charged_shell_energy(ex1, ex2, dist, params)
|
|
|
+ t1 = time.perf_counter()
|
|
|
|
|
|
- # energy = charged_shell_energy(ex1, ex2, dist, kappaR, R)
|
|
|
- # print(potential)
|
|
|
+ print('energy: ', energy)
|
|
|
+ print('time: ', t1 - t0)
|
|
|
|
|
|
# plt.plot(energy)
|
|
|
# plt.show()
|