interactions.py 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112
  1. import expansion
  2. import parameters
  3. import functions as fn
  4. import numpy as np
  5. from py3nj import wigner3j
  6. import time
  7. import matplotlib.pyplot as plt
  8. Array = np.ndarray
  9. Expansion = expansion.Expansion
  10. ModelParams = parameters.ModelParams
  11. # def prefactor(R: float, kappaR: float, c0: float):
  12. # return R * kappaR * 1e4 / (12.04 * c0)
  13. #
  14. #
  15. # def c0(R: float, kappaR: float):
  16. # return 10 * kappaR ** 2 / (0.329 ** 2 * R ** 2)
  17. def expansions_to_common_l(ex1: Expansion, ex2: expansion) -> (Expansion, Expansion):
  18. common_l_array = np.union1d(ex1.l_array, ex2.l_array)
  19. missing_l1 = np.setdiff1d(common_l_array, ex1.l_array, assume_unique=True)
  20. missing_l2 = np.setdiff1d(common_l_array, ex2.l_array, assume_unique=True)
  21. fill_1 = np.zeros(np.sum(2 * missing_l1 + 1))
  22. fill_2 = np.zeros(np.sum(2 * missing_l2 + 1))
  23. full_l_array1, _ = ex1.lm_arrays
  24. full_l_array2, _ = ex2.lm_arrays
  25. # we search for where to place missing coeffs with the help of a boolean array and argmax function
  26. bool1 = (full_l_array1[:, None] - missing_l1[None, :]) > 0
  27. bool2 = (full_l_array2[:, None] - missing_l2[None, :]) > 0
  28. # if all elements of bool are false, i.e. missing_l > all existing_l, additional l values come to the end
  29. indices1 = np.where(np.any(bool1, axis=0), np.argmax(bool1, axis=0), full_l_array1.shape[0])
  30. indices2 = np.where(np.any(bool2, axis=0), np.argmax(bool2, axis=0), full_l_array2.shape[0])
  31. new_coeffs1 = np.insert(ex1.coeffs, np.repeat(indices1, 2 * missing_l1 + 1), fill_1)
  32. new_coeffs2 = np.insert(ex2.coeffs, np.repeat(indices2, 2 * missing_l2 + 1), fill_2)
  33. return Expansion(common_l_array, new_coeffs1), Expansion(common_l_array, new_coeffs2)
  34. def charged_shell_energy(ex1: Expansion, ex2: Expansion, dist: float, params: ModelParams):
  35. ex1, ex2 = expansions_to_common_l(ex1, ex2)
  36. full_l_array, full_m_array = ex1.lm_arrays
  37. coefficient_C = fn.interaction_coeff_C(ex1.l_array[:, None], ex2.l_array[None, :], params.kappaR)
  38. full_coefficient_C = ex1.repeat_over_m(ex2.repeat_over_m(coefficient_C, axis=1), axis=0)
  39. charge_factor = np.real(ex1.coeffs[:, None] * np.conj(ex2.coeffs[None, :]) +
  40. (-1) ** (full_l_array[:, None] + full_l_array[None, :])
  41. * ex1.coeffs[None, :] * ex1.coeffs[:, None])
  42. indices_l, indices_p = np.nonzero(full_m_array[:, None] == full_m_array[None, :])
  43. flat_l = full_l_array[indices_l]
  44. flat_p = full_l_array[indices_p]
  45. flat_m = full_m_array[indices_l] # the same as full_m_array[indices_p]
  46. all_s_array = np.arange(2 * ex1.max_l + 1)
  47. bessels = fn.sph_bessel_k(all_s_array, params.kappa * dist)
  48. s_bool1 = np.abs(flat_l[:, None] - all_s_array[None, :]) <= flat_p[:, None]
  49. s_bool2 = flat_p[:, None] <= (flat_l[:, None] + all_s_array[None, :])
  50. indices_lpm, indices_s = np.nonzero(s_bool1 * s_bool2)
  51. l_vals = flat_l[indices_lpm]
  52. p_vals = flat_p[indices_lpm]
  53. m_vals = flat_m[indices_lpm]
  54. C_vals = full_coefficient_C[indices_l, indices_p][indices_lpm]
  55. charge_vals = charge_factor[indices_l, indices_p][indices_lpm]
  56. s_vals = all_s_array[indices_s]
  57. bessel_vals = bessels[indices_s]
  58. lps_terms = (2 * s_vals + 1) * np.sqrt((2 * l_vals + 1) * (2 * p_vals + 1))
  59. wigner1 = wigner3j(l_vals, s_vals, p_vals,
  60. 0, 0, 0)
  61. wigner2 = wigner3j(l_vals, s_vals, p_vals,
  62. -m_vals, 0, m_vals)
  63. return (params.R ** 2 / (params.kappa * params.epsilon * params.epsilon0)
  64. * np.sum(C_vals * (-1) ** (l_vals + m_vals) * charge_vals * lps_terms * bessel_vals * wigner1 * wigner2))
  65. if __name__ == '__main__':
  66. params = ModelParams(1, 3, 1, 1)
  67. ex1 = expansion.MappedExpansion(1, params.kappaR, 0.001, max_l=5)
  68. ex2 = expansion.MappedExpansion(1, params.kappaR, 0.001, max_l=5)
  69. dist = 2.
  70. # ex1, ex2 = expansions_to_common_l(ex1, ex2)
  71. # print(ex1.coeffs)
  72. # print(ex2.coeffs)
  73. t0 = time.perf_counter()
  74. energy = charged_shell_energy(ex1, ex2, dist, params)
  75. t1 = time.perf_counter()
  76. print('energy: ', energy)
  77. print('time: ', t1 - t0)
  78. # plt.plot(energy)
  79. # plt.show()