peak_heigth.py 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165
  1. import matplotlib.pyplot as plt
  2. from charged_shells import expansion, interactions, mapping, functions
  3. from charged_shells.parameters import ModelParams
  4. import numpy as np
  5. from typing import Literal
  6. from pathlib import Path
  7. from functools import partial
  8. import json
  9. from itertools import cycle
  10. Array = np.ndarray
  11. Expansion = expansion.Expansion
  12. RotConfig = Literal['ep', 'pp']
  13. def peak_energy_plot(kappaR: Array,
  14. a_bar: Array,
  15. which: Literal['ep', 'pp'],
  16. R: float = 150,
  17. dist: float = 2.,
  18. l_max=20,
  19. save_as: Path = None):
  20. params = ModelParams(R=R, kappaR=kappaR)
  21. ex1 = expansion.MappedExpansionQuad(a_bar[:, None], params.kappaR[None, :], 0.001, l_max=l_max)
  22. ex2 = ex1.clone()
  23. if which == 'ep':
  24. ex1.rotate_euler(alpha=0, beta=np.pi / 2, gamma=0)
  25. energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy, dist=dist), 1)
  26. energy = energy_fn(ex1, ex2, params)
  27. fig, ax = plt.subplots()
  28. for en, ab in zip(energy, a_bar):
  29. ax.plot(kappaR, en / en[0], label=rf'$\bar a = {ab:.1f}$')
  30. # ax.plot(kappaR, en, label=rf'$\bar a = {ab:.1f}$')
  31. ax.legend(fontsize=12)
  32. ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15)
  33. ax.set_xlabel(r'$\kappa R$', fontsize=15)
  34. ax.set_ylabel(rf'$\bar V$', fontsize=15)
  35. plt.tight_layout()
  36. if save_as is not None:
  37. plt.savefig(save_as, dpi=600)
  38. plt.show()
  39. def IC_peak_energy_plot(config_data: dict,
  40. a_bar: list,
  41. which: RotConfig,
  42. max_kappaR: float = 30.,
  43. R: float = 150,
  44. save_as: Path = None,
  45. save_data: bool = False,
  46. quad_correction: bool = False):
  47. em_data_path = (Path(config_data["emanuele_data"]).joinpath("FIG_11"))
  48. em_data = np.load(em_data_path.joinpath("pair_energy_fig11.npz"))
  49. data = em_data['fixA']
  50. if which == 'ep':
  51. column_idx = 4
  52. elif which == 'pp':
  53. column_idx = 3
  54. else:
  55. raise ValueError
  56. abar, inverse, counts = np.unique(data[:, 1], return_counts=True, return_inverse=True)
  57. all_kappaR = np.unique(data[:, 2])
  58. kappaR = np.geomspace(np.min(all_kappaR), max_kappaR, 30)
  59. params = ModelParams(R=R, kappaR=kappaR)
  60. ex1 = expansion.MappedExpansionQuad(np.array(a_bar)[:, None], params.kappaR[None, :], 0.001, l_max=20)
  61. ex2 = ex1.clone()
  62. if which == 'ep':
  63. ex1.rotate_euler(alpha=0, beta=np.pi / 2, gamma=0)
  64. energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy, dist=2), 1)
  65. energy = energy_fn(ex1, ex2, params)
  66. data_dict_ic = {}
  67. data_dict_cs = {}
  68. k = 0
  69. for i in range(len(abar)):
  70. ab = np.around(abar[i], 5)
  71. if ab in np.around(a_bar, 5):
  72. idx, = np.nonzero(inverse == i)
  73. kR = data[idx, 2][data[idx, 2] <= max_kappaR]
  74. en = data[idx, column_idx][data[idx, 2] <= max_kappaR]
  75. if quad_correction:
  76. en *= extra_correction(ab, kR)
  77. sort = np.argsort(kR)
  78. data_dict_ic[ab] = np.stack((kR[sort], np.abs(en)[sort])).T
  79. data_dict_cs[ab] = np.stack((kappaR, np.abs(energy[k]))).T
  80. k += 1
  81. if save_data:
  82. ic_save = {str(key): val for key, val in data_dict_ic.items()}
  83. cs_save = {str(key): val for key, val in data_dict_cs.items()}
  84. ic_save['abar'] = a_bar
  85. cs_save['abar'] = a_bar
  86. with open(Path("/home/andraz/ChargedShells/charged-shells/config.json")) as config_file:
  87. config_data = json.load(config_file)
  88. np.savez(Path(config_data["figure_data"]).joinpath("fig_11_IC.npz"), **ic_save)
  89. np.savez(Path(config_data["figure_data"]).joinpath("fig_11_CS.npz"), **cs_save)
  90. colors = cycle(plt.rcParams['axes.prop_cycle'].by_key()['color'])
  91. fig, ax = plt.subplots()
  92. for (key, data1), data2 in zip(data_dict_ic.items(), data_dict_cs.values()):
  93. current_color = next(colors)
  94. ax.plot(data1[:, 0], data1[:, 1], label=rf'$\bar a = {key:.2f}$', c=current_color)
  95. ax.plot(data2[:, 0], data2[:, 1], ls='--', c=current_color)
  96. ax.legend(fontsize=14, ncol=2)
  97. ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15)
  98. ax.set_xlabel(r'$\kappa R$', fontsize=15)
  99. y_label = r'$U_{pp}$' if which == 'pp' else r'$|U_{ep}|$'
  100. ax.set_ylabel(y_label, fontsize=15)
  101. ax.set_yscale('log')
  102. ax.set_xscale('log')
  103. plt.tight_layout()
  104. if save_as is not None:
  105. plt.savefig(save_as, dpi=600)
  106. plt.show()
  107. def extra_correction(a_bar, kappaR):
  108. y = a_bar * kappaR
  109. # return (kappaR ** 2 * a_bar ** 4 * functions.sph_bessel_k(1, kappaR) / functions.sph_bessel_k(3, kappaR) *
  110. # np.sinh(y) / (-3 * y * np.cosh(y) + (3 + y ** 2) * np.sinh(y)))
  111. return (a_bar ** 2 * functions.sph_bessel_k(1, kappaR) / functions.sph_bessel_k(3, kappaR)
  112. * functions.sph_bessel_i(0, y) / functions.sph_bessel_i(2, y))
  113. def main():
  114. with open(Path("/home/andraz/ChargedShells/charged-shells/config.json")) as config_file:
  115. config_data = json.load(config_file)
  116. # kappaR = np.arange(0.5, 50, 0.1)
  117. # a_bar = np.arange(0.2, 0.8, 0.2)
  118. # peak_energy_plot(kappaR, a_bar, which='pp',
  119. # # save_as=Path('/home/andraz/ChargedShells/Figures/nonmonotonicity_check_ep.pdf')
  120. # )
  121. a_bar = [0.2, 0.32, 0.52, 0.8]
  122. # a_bar = list(np.arange(0.2, 0.81, 0.04))
  123. IC_peak_energy_plot(config_data, a_bar=a_bar, which='pp', max_kappaR=50,
  124. save_as=Path('/home/andraz/ChargedShells/Figures/Emanuele_data/both_nonmonotonicity_check_pp.png'),
  125. save_data=False,
  126. quad_correction=False
  127. )
  128. # kr = np.linspace(0.1, 100, 1000)
  129. # for ab in [0.2, 0.32, 0.52, 0.8]:
  130. # plt.plot(kr, extra_correction(ab, kr))
  131. # plt.xscale('log')
  132. # plt.yscale('log')
  133. # plt.show()
  134. if __name__ == '__main__':
  135. main()