123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- import matplotlib.pyplot as plt
- from charged_shells import expansion, interactions, mapping, functions
- from charged_shells.parameters import ModelParams
- import numpy as np
- from typing import Literal
- from pathlib import Path
- from functools import partial
- import json
- from itertools import cycle
- Array = np.ndarray
- Expansion = expansion.Expansion
- RotConfig = Literal['ep', 'pp']
- def peak_energy_plot(kappaR: Array,
- a_bar: Array,
- which: Literal['ep', 'pp'],
- R: float = 150,
- dist: float = 2.,
- l_max=20,
- save_as: Path = None):
- params = ModelParams(R=R, kappaR=kappaR)
- ex1 = expansion.MappedExpansionQuad(a_bar[:, None], params.kappaR[None, :], 0.001, l_max=l_max)
- ex2 = ex1.clone()
- if which == 'ep':
- ex1.rotate_euler(alpha=0, beta=np.pi / 2, gamma=0)
- energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy, dist=dist), 1)
- energy = energy_fn(ex1, ex2, params)
- fig, ax = plt.subplots()
- for en, ab in zip(energy, a_bar):
- ax.plot(kappaR, en / en[0], label=rf'$\bar a = {ab:.1f}$')
- # ax.plot(kappaR, en, label=rf'$\bar a = {ab:.1f}$')
- ax.legend(fontsize=12)
- ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15)
- ax.set_xlabel(r'$\kappa R$', fontsize=15)
- ax.set_ylabel(rf'$\bar V$', fontsize=15)
- plt.tight_layout()
- if save_as is not None:
- plt.savefig(save_as, dpi=600)
- plt.show()
- def IC_peak_energy_plot(config_data: dict,
- a_bar: list,
- which: RotConfig,
- max_kappaR: float = 30.,
- R: float = 150,
- save_as: Path = None,
- save_data: bool = False,
- quad_correction: bool = False):
- em_data_path = (Path(config_data["emanuele_data"]).joinpath("FIG_11"))
- em_data = np.load(em_data_path.joinpath("pair_energy_fig11.npz"))
- data = em_data['fixA']
- if which == 'ep':
- column_idx = 4
- elif which == 'pp':
- column_idx = 3
- else:
- raise ValueError
- abar, inverse, counts = np.unique(data[:, 1], return_counts=True, return_inverse=True)
- all_kappaR = np.unique(data[:, 2])
- kappaR = np.geomspace(np.min(all_kappaR), max_kappaR, 30)
- params = ModelParams(R=R, kappaR=kappaR)
- ex1 = expansion.MappedExpansionQuad(np.array(a_bar)[:, None], params.kappaR[None, :], 0.001, l_max=20)
- ex2 = ex1.clone()
- if which == 'ep':
- ex1.rotate_euler(alpha=0, beta=np.pi / 2, gamma=0)
- energy_fn = mapping.parameter_map_two_expansions(partial(interactions.charged_shell_energy, dist=2), 1)
- energy = energy_fn(ex1, ex2, params)
- data_dict_ic = {}
- data_dict_cs = {}
- k = 0
- for i in range(len(abar)):
- ab = np.around(abar[i], 5)
- if ab in np.around(a_bar, 5):
- idx, = np.nonzero(inverse == i)
- kR = data[idx, 2][data[idx, 2] <= max_kappaR]
- en = data[idx, column_idx][data[idx, 2] <= max_kappaR]
- if quad_correction:
- en *= extra_correction(ab, kR)
- sort = np.argsort(kR)
- data_dict_ic[ab] = np.stack((kR[sort], np.abs(en)[sort])).T
- data_dict_cs[ab] = np.stack((kappaR, np.abs(energy[k]))).T
- k += 1
- if save_data:
- ic_save = {str(key): val for key, val in data_dict_ic.items()}
- cs_save = {str(key): val for key, val in data_dict_cs.items()}
- ic_save['abar'] = a_bar
- cs_save['abar'] = a_bar
- with open(Path("/home/andraz/ChargedShells/charged-shells/config.json")) as config_file:
- config_data = json.load(config_file)
- np.savez(Path(config_data["figure_data"]).joinpath("fig_11_IC.npz"), **ic_save)
- np.savez(Path(config_data["figure_data"]).joinpath("fig_11_CS.npz"), **cs_save)
- colors = cycle(plt.rcParams['axes.prop_cycle'].by_key()['color'])
- fig, ax = plt.subplots()
- for (key, data1), data2 in zip(data_dict_ic.items(), data_dict_cs.values()):
- current_color = next(colors)
- ax.plot(data1[:, 0], data1[:, 1], label=rf'$\bar a = {key:.2f}$', c=current_color)
- ax.plot(data2[:, 0], data2[:, 1], ls='--', c=current_color)
- ax.legend(fontsize=14, ncol=2)
- ax.tick_params(which='both', direction='in', top=True, right=True, labelsize=15)
- ax.set_xlabel(r'$\kappa R$', fontsize=15)
- y_label = r'$U_{pp}$' if which == 'pp' else r'$|U_{ep}|$'
- ax.set_ylabel(y_label, fontsize=15)
- ax.set_yscale('log')
- ax.set_xscale('log')
- plt.tight_layout()
- if save_as is not None:
- plt.savefig(save_as, dpi=600)
- plt.show()
- def extra_correction(a_bar, kappaR):
- y = a_bar * kappaR
- # return (kappaR ** 2 * a_bar ** 4 * functions.sph_bessel_k(1, kappaR) / functions.sph_bessel_k(3, kappaR) *
- # np.sinh(y) / (-3 * y * np.cosh(y) + (3 + y ** 2) * np.sinh(y)))
- return (a_bar ** 2 * functions.sph_bessel_k(1, kappaR) / functions.sph_bessel_k(3, kappaR)
- * functions.sph_bessel_i(0, y) / functions.sph_bessel_i(2, y))
- def main():
- with open(Path("/home/andraz/ChargedShells/charged-shells/config.json")) as config_file:
- config_data = json.load(config_file)
- # kappaR = np.arange(0.5, 50, 0.1)
- # a_bar = np.arange(0.2, 0.8, 0.2)
- # peak_energy_plot(kappaR, a_bar, which='pp',
- # # save_as=Path('/home/andraz/ChargedShells/Figures/nonmonotonicity_check_ep.pdf')
- # )
- a_bar = [0.2, 0.32, 0.52, 0.8]
- # a_bar = list(np.arange(0.2, 0.81, 0.04))
- IC_peak_energy_plot(config_data, a_bar=a_bar, which='pp', max_kappaR=50,
- save_as=Path('/home/andraz/ChargedShells/Figures/Emanuele_data/both_nonmonotonicity_check_pp.png'),
- save_data=False,
- quad_correction=False
- )
- # kr = np.linspace(0.1, 100, 1000)
- # for ab in [0.2, 0.32, 0.52, 0.8]:
- # plt.plot(kr, extra_correction(ab, kr))
- # plt.xscale('log')
- # plt.yscale('log')
- # plt.show()
- if __name__ == '__main__':
-
- main()
|