12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- import expansion
- import functions as fn
- import numpy as np
- import matplotlib.pyplot as plt
- Array = np.ndarray
- Expansion = expansion.Expansion
- def prefactor(R: float, kappaR: float, c0: float):
- return R * kappaR * 1e4 / (12.04 * c0)
- def c0(R: float, kappaR: float):
- return 10 * kappaR ** 2 / (0.329 ** 2 * R ** 2)
- def expansions_to_common_l(ex1: Expansion, ex2: expansion) -> (Expansion, Expansion):
- common_l_array = np.union1d(ex1.l_array, ex2.l_array)
- missing_l1 = np.setdiff1d(common_l_array, ex1.l_array, assume_unique=True)
- missing_l2 = np.setdiff1d(common_l_array, ex2.l_array, assume_unique=True)
- fill_1 = np.zeros(np.sum(2 * missing_l1 + 1))
- fill_2 = np.zeros(np.sum(2 * missing_l2 + 1))
- full_l_array1, _ = ex1.lm_arrays
- full_l_array2, _ = ex2.lm_arrays
- # we search for where to place missing coeffs with the help of a boolean array and argmax function
- bool1 = (full_l_array1[:, None] - missing_l1[None, :]) > 0
- bool2 = (full_l_array2[:, None] - missing_l2[None, :]) > 0
- # we set last element to True so that argmax returns last idx if all missing l > max_l
- bool1[-1, :] = True
- bool2[-1, :] = True
- indices1 = np.argmax(bool1, axis=0)
- indices2 = np.argmax(bool2, axis=0)
- new_coeffs1 = np.insert(ex1.coeffs, np.repeat(indices1, 2 * missing_l1 + 1), fill_1)
- new_coeffs2 = np.insert(ex2.coeffs, np.repeat(indices2, 2 * missing_l2 + 1), fill_2)
- assert len(new_coeffs1) == len(new_coeffs2)
- return Expansion(common_l_array, new_coeffs1), Expansion(common_l_array, new_coeffs2)
- def charged_shell_energy(ex1: Expansion, ex2: Expansion, dist: float, kappaR: float, R: float):
- ex1, ex2 = expansions_to_common_l(ex1, ex2)
- full_l_array, full_m_array = ex1.lm_arrays
- coefficient_C = fn.interaction_coeff_C(ex1.l_array[:, None], ex2.l_array[None, :], kappaR)
- full_coefficient_C = ex1.repeat_over_m(ex2.repeat_over_m(coefficient_C, axis=1), axis=0)
- indices, _ = np.nonzero(full_m_array[:, None] == full_m_array[None, :])
- flat_l = full_l_array[indices]
- flat_m = full_m_array[indices]
- flat_C = full_coefficient_C[indices1, indices2]
- flat_sigma1 = ex1.coeffs[indices1]
- flat_sigma2 = ex2.coeffs[indices2]
- # charge_factor = -1 ** (flat_l + flat_m) * np.real(flat_sigma1 * np.conj(flat_sigma2) + (-1) ** (flat_l + flat_p) * )
- return
- if __name__ == '__main__':
- kappaR = 3
- R = 150
- ex1 = expansion.MappedExpansion(1, kappaR, 0.001, max_l=10)
- ex2 = expansion.MappedExpansion(1, kappaR, 0.001, max_l=5)
- dist = 2.
- ex1, ex2 = expansions_to_common_l(ex1, ex2)
- print(ex1.coeffs)
- print(ex2.coeffs)
- # energy = charged_shell_energy(ex1, ex2, dist, kappaR, R)
- # print(potential)
- # plt.plot(energy)
- # plt.show()
|