interactions.py 2.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091
  1. import expansion
  2. import functions as fn
  3. import numpy as np
  4. import matplotlib.pyplot as plt
  5. Array = np.ndarray
  6. Expansion = expansion.Expansion
  7. def prefactor(R: float, kappaR: float, c0: float):
  8. return R * kappaR * 1e4 / (12.04 * c0)
  9. def c0(R: float, kappaR: float):
  10. return 10 * kappaR ** 2 / (0.329 ** 2 * R ** 2)
  11. def expansions_to_common_l(ex1: Expansion, ex2: expansion) -> (Expansion, Expansion):
  12. common_l_array = np.union1d(ex1.l_array, ex2.l_array)
  13. missing_l1 = np.setdiff1d(common_l_array, ex1.l_array, assume_unique=True)
  14. missing_l2 = np.setdiff1d(common_l_array, ex2.l_array, assume_unique=True)
  15. fill_1 = np.zeros(np.sum(2 * missing_l1 + 1))
  16. fill_2 = np.zeros(np.sum(2 * missing_l2 + 1))
  17. full_l_array1, _ = ex1.lm_arrays
  18. full_l_array2, _ = ex2.lm_arrays
  19. # we search for where to place missing coeffs with the help of a boolean array and argmax function
  20. bool1 = (full_l_array1[:, None] - missing_l1[None, :]) > 0
  21. bool2 = (full_l_array2[:, None] - missing_l2[None, :]) > 0
  22. # we set last element to True so that argmax returns last idx if all missing l > max_l
  23. bool1[-1, :] = True
  24. bool2[-1, :] = True
  25. indices1 = np.argmax(bool1, axis=0)
  26. indices2 = np.argmax(bool2, axis=0)
  27. new_coeffs1 = np.insert(ex1.coeffs, np.repeat(indices1, 2 * missing_l1 + 1), fill_1)
  28. new_coeffs2 = np.insert(ex2.coeffs, np.repeat(indices2, 2 * missing_l2 + 1), fill_2)
  29. assert len(new_coeffs1) == len(new_coeffs2)
  30. return Expansion(common_l_array, new_coeffs1), Expansion(common_l_array, new_coeffs2)
  31. def charged_shell_energy(ex1: Expansion, ex2: Expansion, dist: float, kappaR: float, R: float):
  32. ex1, ex2 = expansions_to_common_l(ex1, ex2)
  33. full_l_array, full_m_array = ex1.lm_arrays
  34. coefficient_C = fn.interaction_coeff_C(ex1.l_array[:, None], ex2.l_array[None, :], kappaR)
  35. full_coefficient_C = ex1.repeat_over_m(ex2.repeat_over_m(coefficient_C, axis=1), axis=0)
  36. indices, _ = np.nonzero(full_m_array[:, None] == full_m_array[None, :])
  37. flat_l = full_l_array[indices]
  38. flat_m = full_m_array[indices]
  39. flat_C = full_coefficient_C[indices1, indices2]
  40. flat_sigma1 = ex1.coeffs[indices1]
  41. flat_sigma2 = ex2.coeffs[indices2]
  42. # charge_factor = -1 ** (flat_l + flat_m) * np.real(flat_sigma1 * np.conj(flat_sigma2) + (-1) ** (flat_l + flat_p) * )
  43. return
  44. if __name__ == '__main__':
  45. kappaR = 3
  46. R = 150
  47. ex1 = expansion.MappedExpansion(1, kappaR, 0.001, max_l=10)
  48. ex2 = expansion.MappedExpansion(1, kappaR, 0.001, max_l=5)
  49. dist = 2.
  50. ex1, ex2 = expansions_to_common_l(ex1, ex2)
  51. print(ex1.coeffs)
  52. print(ex2.coeffs)
  53. # energy = charged_shell_energy(ex1, ex2, dist, kappaR, R)
  54. # print(potential)
  55. # plt.plot(energy)
  56. # plt.show()